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This Instructor Guide is a work in progress! If you have questions about something not
addressed in this guide, you can either submit an issue on GitHub or send me an email at
dana.ernst@nau.edu. I want instructors that utilize An Introduction to Proof via Inquiry-
Based Learning to be as successful as possible, so please reach out with questions or concerns.

Overview

An Introduction to Proof via Inquiry-Based Learning is intended to be used for a one-semester or
quarter introduction to proof course (sometimes referred to as a transition to proof course). The
purpose of the book is to introduce the reader to the process of constructing and writing formal
and rigorous mathematical proofs. The intended audience is mathematics majors and minors.
However, the book is also appropriate for anyone curious about mathematics and writing proofs.
Most users of the book will have taken at least one semester of calculus, although other than some
familiarity with a few standard functions in Chapter 8: Functions, content knowledge of calculus
is not required.

In order to promote a more active participation in student learning, An Introduction to Proof via
Inquiry-Based Learning adheres to an educational philosophy called inquiry-based learning (IBL).
IBL is a student-centered method of teaching that engages students in sense-making activities and
challenges them to create or discover mathematics. The book expects readers to actively engage
with the topics at hand and to construct their own understanding. The reader will be given
tasks requiring them to solve problems, conjecture, experiment, explore, create, and communicate.
Rather than showing facts or a clear, smooth path to a solution, the book guides and mentors the
reader through an adventure in mathematical discovery.

However, the book makes no assumptions about the specifics of how the instructor will choose to
implement an IBL approach. Ultimately, the instructor should do what is best for their students.
Generally speaking, students are told which problems and theorems to grapple with for the next
class sessions, and then the majority of class time is devoted to students working in groups on
unresolved solutions/proofs or having students present their proposed solutions/proofs to the rest
of the class. Students should—as much as possible—be responsible for guiding the acquisition
of knowledge and validating the ideas presented. That is, studens should not be looking to the
instructor as the sole authority. In an IBL course, instructor and students have joint responsibility
for the depth and progress of the course. While effective IBL courses come in a variety of forms,
they all possess a few essential ingredients. According to Laursen and Rasmussen (2019), the Four
Pillars of IBL are:
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e Students engage deeply with coherent and meaningful mathematical tasks.
e Students collaboratively process mathematical ideas.

e Instructors inquire into student thinking.

e Instructors foster equity in their design and facilitation choices.

The book can only address the first pillar while it is the responsibility of the instructor and class
to develop a culture that provides an adequate environment for the remaining pillars to take root.
Again, I would like to emphasize that the book is mostly agnostic about the approach that an
instructor would take when teaching out of the book. Heck, I don’t see any reason why an instructor
couldn’t use the book for a lecture-based class. Although that’s certainly not what I had in mind
when writing the book.

The book includes more content than one can expect to cover in a single semester or quarter. This
allows the instructor/reader to pick and choose the sections that suit their needs and desires. Each
chapter takes a focused approach to the included topics, but also includes many gentle exercises
aimed at developing intuition.

The following sections form the core of the book and are likely the sections that an instructor would
focus on in a one-semester introduction to proof course.

e Chapter 2: Mathematics and Logic. All sections.

Chapter 3: Set Theory. Sections 3.1, 3.3, 3.4, and 3.5.

Chapter 4: Induction. All sections.

Chapter 7: Relations and Partitions. Sections 7.1, 7.2, and 7.3.

Chapter 8: Functions. Sections 8.1, 8.2, 8.3, and 8.4.
e Chapter 9: Cardinality. All sections.

Time permitting, instructors can pick and choose topics from the remaining sections. I typically
cover the core sections listed above together with Chapter 6: Three Famous Theorems during a
single semester.

There are many useful resources available that instructors can utilize for designing an effective
IBL/active learning experience for their students. The Academy of Inquiry Based Learning is a
good place to get started. I also suggest consulting the MAA’s Instructional Practices Guide, which
is a guide to evidence-based instructional practices in undergraduate mathematics. One effective
approach to getting started with IBL is mimicking another instructor’s approach and then refining
for your purposes over time. Feel free to borrow as many ideas as you would like from how I set
up the course I teach using An Introduction to Proof via Inquiry-Based Learning. You can find the
syllabus, homework assignments, etc from two recent iterations of my course at the following links:

e Fall 2021

e Spring 2020
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My Fall 2021 course utilized a version of the book that is nearly identical to the current version,
but I happened to cover far less material than usual. I covered more ground in Spring 2020, but
the version of the book I used that semester may look a bit different than the current version. I
would consider the amount of material I covered in Spring 2020 to be fairly typical. The differences
in the amount of material that I covered had nothing to do with the version of the book! Feel free
to reach out with questions about how to set up your course or how to best make use of the book.

Evidence in Favor of Active Learning

If you are already using or considering using An Introduction to Proof via Inquiry-Based Learning,
you likely don’t need to be convinced of the merits of active learning. Nonetheless, below is very
brief summary of some the data that supports the use of active learning.

Evidence in favor of some form of active engagement of students is strong across STEM disciplines.
Freeman et al. (2014) conducted a meta-analysis of 225 studies of various forms of active learning,
and found that students were 1.5 times more likely to fail in traditional courses as compared to
active learning courses, and students in active learning courses outperformed students in traditional
courses by 0.47 standard deviations on examinations and concept inventories. The following snip-
pet from Freeman et al. (2014) captures the importance of utilizing active learning across STEM
education:

“The results raise questions about the continued use of traditional lecturing as a control
in research studies, and support active learning as the preferred, empirically validated
teaching practice in reqular classrooms.”

For IBL specifically, a research group from the University of Colorado Boulder led by Sandra
Laursen conducted a comprehensive study of student outcomes in IBL undergraduate mathematics
courses while linking these outcomes to students’ and instructors’ experiences of IBL (see Laursen
et al. 2011; Laursen 2013; Kogan and Laursen 2014; Laursen et al. 2014). This quasi-experimental,
longitudinal study examined over 100 courses at four different campuses over a period that spanned
two years.

On average over 60% of IBL class time was spent on student-centered activities including student-
led presentations, discussion, and small-group work. In contrast, in non-IBL courses, 87% of class
time was devoted to students’ listening to an instructor talk. In addition, the IBL sections were
rated more highly for a supportive classroom environment and students conveyed that engaging in
meaningful mathematical tasks while collaborating was essential to their learning. Below is a brief
summary of some of the outcomes of Laursen et al.’s work.

e After an IBL or comparative course, IBL students reported higher learning gains than their
non-IBL peers, across cognitive, affective, and collaborative domains of learning.

e In later courses, students who had taken an IBL course earned grades as good or better than
those of students who took non-IBL sections, despite having “covered” less material.

e Non-IBL courses show a marked gender gap: across the board, women reported lower learning
gains and less supportive attitudes than did men (effect size 0.4-0.5). Women’s confidence
and sense of mastery of mathematics, and their interest in continued study of math were
lower. This difference appears to be primarily affective, not due to real differences in women’s
mathematical preparation or achievement.
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e This gender gap was erased in IBL classes: women’s learning gains were equal to men’s, and
their confidence and intent to persist similar. IBL approaches leveled the playing field for
women, fixing a course that is problematic for women yet with no harm to men.

You can watch a short YouTube video of Sandra Laursen summarizing most of the recent research
about inquiry-based learning here. The Conference Board of the Mathematical Sciences (CBMS)
wrote the following in their position statement on active learning in 2016:

“ .. we call on institutions of higher education, mathematics departments and the math-
ematics faculty, public policy-makers, and funding agencies to invest time and resources
to ensure that effective active learning is incorporated into post-secondary mathematics
classrooms.”

In addition, the Manifesto of the MAA Instructional Practices Guide states:

“We must gather the courage to advocate beyond our own classroom for student-centered
instructional strategies that promote equitable access to mathematics for all students.
We stand at a crossroads, and we must choose the path of transformation in order to
fulfill our professional responsibility to our students.”

Structure of the Textbook

As students read the book, they should be digesting the material in a meaningful way. In addition
to reading and understanding new definitions and their related concepts, students will be asked
to complete problems aimed at solidifying their understanding of the material. In particular, the
reader is asked to make conjectures, produce counterexamples, and prove theorems. All of these
tasks will almost always be challenging.

The items labeled as Definition and Example are meant to be read and digested. However, the
items labeled as Problem, Theorem, and Corollary require action on the reader’s part. Items
labeled as Problem are sort of a mixed bag. Some Problems are computational in nature and
aimed at improving understanding of a particular concept while others ask the reader to provide a
counterexample for a statement if it is false or to provide a proof if the statement is true. Items
with the Theorem and Corollary designation are mathematical facts and the intention is for the
reader to produce a valid proof of the given statement. All of this is spelled out in the Introduction
of the book, but I suggest taking the time to communicate this to your students.

Oftentimes, the problems and theorems are guiding the reader towards a substantial, more general
result. Other times, they are designed to get the reader to apply ideas in a new way. Please take
the time to tell your students that every task in the book is doable but sometimes very challenging.
They may not be successful on their first, or even second or third try. This is okay! Remind them
of this often.

Discussion of new topics is typically kept at a minimum and there are very few examples in the
book. This is intentional. One of the objectives of the items labeled as Problem is for the reader to
produce the examples needed to internalize unfamiliar concepts. The overarching goal of the book
is to help the reader develop a deep and meaningful understanding of the processes of producing
mathematics by putting them in direct contact with mathematical phenomena.
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General Comments

blah

Chapter 1: Introduction

I ask my students to read this short chapter and then take the time in class to highlight the content
in Section 1.4. Despite this, I always have at least one student that asks me what they are
supposed to do the first time I assign a theorem. At a minimum, I would ask students to read
Sections 1.2—1.4.

Chapter 2: Mathematics and Logic

Most instructors will likely choose to cover Chapter 2 as part of their course. While this chapter
sets the stage for what is to come later in the book, I caution you from getting too bogged down
here. I recommend covering this chapter as swiftly as your students can manage, so that you have
time later for more challenging topics. In my opinion, you can crank through this chapter without
causing any damage. If necessary, you can always return to the foundation in this chapter as needed.
None of the mathematical theorems (in contrast to the logical theorems, e.g., Theorem 2.26) are
needed in future chapters. The sole purpose of the mathematical theorems in Chapter 2 is to
provide an onramp to proving theorems in a familiar context.

Section 2.1 is a bit unusual as it asks students to jump right into proving theorems without any
initial guidance. This is intentional, and in my experience is a very effective way to start the course.
First, it gives you a sense of where your students are at in terms of their general understanding,
or lack thereof, mathematical proofs. I think you will be surprised at what students are capable
of without being explicitly told how to write a proof. Second, and more importantly, this section
develops an intellectual need for more rigor and more structure. Take the time to communicate to
your students what the purpose of this section is. Emphasize to them that they should just jump in
and try their hand at writing proofs without too much concern for whether they are “doing it the
right way.” Lots of interesting issues will bubble to the surface and you will have to pick and choose
which topics you want to carefully address now versus later in the semester. Theorem 2.2 is the
first theorem in the book and you should remind students that the intended task for theorems is
to prove them.

The definitions for even and odd integers are given in Definition 2.1, but many students will
attempt to use their favorite characterizations that they are familiar with. For example, they
might say that an integer is even if it is divisible by 2. While this is certainly true, they won’t
encounter the definition of “divides” until Definition 2.5. It’s a good idea to point out that this
characterization of even follows immediately from Definitions 2.1 and 2.5. Students are also
often surprised that negative integers can be odd or even.

You will have to decide how firm of a stance you want to take on phrases like “even integer” versus
“even number.” While the former is certainly the correct choice of language, my view is that the
adjectives “even” and “odd” only refer to integers, so there shouldn’t be much confusion when one
says, “even number.” You should decide in advance how you want to approach this issue. At the
very least, be sure to have a conversation about this with your students.



To save some time, notice that I wrote, “For the remainder of this section, you may assume that
every integer is either even or odd but never both” in the paragraph below Definition 2.1. This is
something you should point out to students and be sure to tell them that officially this is something
one would need to prove. We will be more careful in later chapters.

Problem 2.6 and the paragraph that follows address the difference between “n divides m” versus
“m divided by n.” The former is a sentence while the latter is a noun (i.e., the number one obtains
after dividing m by n). You should be prepared for this confusion to rear its head multiple times
during your course.

Corollary 2.9 is the first encounter with a corollary in the book. It’s a good idea to remind students
what a corollary is (even though there is a reminder in the text right above Corollary 2.9). One
can prove Corollary 2.9 by appealing to Theorem 2.8 or directly. I always find a way to make
sure both approaches get presented (by either students or by me) and then we take a moment to
discuss the fact that we can appeal to previous results or return to the definition and prove things
from scratch.

The same two approaches could be employed in the proof of Theorem 2.10. In fact, perhaps I
should have called Theorem 2.10 a corollary.

Definition 2.18(d) introduces the definition of the truth value of a conditional statement. It’s
important to emphasize to students that this is a definition. Students are often disturbed by the
fact that A = B is true when A is false no matter what the truth value of B is. The purpose
of Problem 2.23 is to help students reconcile any cognitive dissonance that students might have
with this definition.

While Section 2.1 asks students to jump in head first without a formal understanding of what
it was we were doing, Section 2.2 hits the reset button and takes a more careful approach while
introducing the basics of propositional logic. One detail you could get lots in the weeds on is
whether a given English-language sentence is a proposition or not. My suggestion is to not lose
focus here. There are lots of subtle issues that I have chosen not to formally address in the book.

My suggestion is minimize the importance of the symbolic logic (e.g., strings utilizing symbols such
as vV, 3, A, V, =, etc.) presented in Sections 2.2—2.5. I think is important for students to be
exposed to symbolic logic, but I essentially abandon it after Section 2.5. Discourage your students
from using the formal symbolism in their mathematical proofs.

The intended proof technique for most of the theorems in Section 2.2 is create a truth table. You’ll
likely need to provide some guidance to your students about how many intermediate columns they
should include in their truth tables. Corollary 2.41 can be proved by either creating a truth
table or by appealing to Theorem 2.40, Problem 2.27, and Theorem 2.25 and then relying
on the transitivity of logical equivalence. Note that I do not explicitly state transitivity of logical
equivalence anywhere in the textbook.

While you could skip Theorem 2.56 and Theorem 2.57, these theorems provide a first oppor-
tunity to practice writing a proof by contradiction and a biconditional proof, respectively.

One thing worth pointing out is that there is an implicit universal quantifier in front of all statements
of the form “if A(z), then B(z)”, where A(z) and B(x) are predicates and z is some variable. I
attempt to address this issue just after Problem 2.67. This is standard convention in mathematics
and is definitely worth pointing out to your students. The statement “For all z, if A(z), then B(x)”
is a proposition. This statement may sometimes be written in two sentences, where the first sentence



bounds the variable. For example, “Let n be a natural number. If A(n), then B(n).” Another way
to write the same statement would be “If n is a natural number such that A(n), then B(n).” This
is how most of the theorems in Sections 2.1 and 2.3 are written. More commonly, if the universe of
discourse is understood (or can be inferred), one might simply write “If A(n), then B(n).” Officially,
“If A(n), then B(n)” is a predicate, but if we take this as short hand for “For all n, if A(n), then
B(n)”, we have a proposition.

It’s not crucial that you cover Problems 2.70-2.73, but I do find it helpful for students to practice
the conversion from plain English to symbolic logic and vice versa. The idea in Problem 2.73 is
probably a good one to discuss.

Students struggle with proving Theorem 2.76, which handles the negation of quantifiers. This
is a good example where you must think very deeply, but there isn’t much to write down. This is
a good example of a theorem where I would probably ask students to prove one of the two parts
(leaving it to them to choose which part).

Problem 2.86 is time consuming. One way you could speed things up is to tell them which
parts are true versus false. You could also skip some of the parts. While Theorems 2.89 and
2.90 are not crucial for later, they could be skipped, but I recommend doing at least one of them.
Theorem 2.91 is also not crucial for future chapters, but provides an opportunity for proving
uniqueness. It’s a long while before this issue crops up again (the next instance is Theorem 4.36),
so you could defer the discussion about uniqueness until it is absolutely necessary.

One detail that gets swept under the rug in Sections 2.4 and 2.5 is that we discuss the truth
value of conditional propositions in Definition 2.18 and then take for granted that we can apply
the same structure to conditional statements involving predicates. For better or worse, this seems
to be the standard approach is introduction to proof books. My personal take is that I don’t want
to get bogged down in these sorts of pedantic details, but if you feel otherwise, you should address
the issue carefully for your students.

Chapter 3: Set Theory

Unless you know your students are familiar with the content in Chapter 3, I think covering this
chapter is essential. In my experience, once students get the hang of “element chasing”, this chapter
goes smoothly. You could skip Section 3.2 about paradoxes or simply assign it as outside reading.
However, in my experience, students tend to be captivated by paradoxes. Moreover, at least at
my institution, there isn’t another place in the curriculum that a student would be exposed to the
idea of a paradox in mathematics. If you have intentions of ever discussing the Axiom of Choice
(Axiom 3.43), you should consider discussing Section 3.2.

Taking the time to carefully outline a skeleton proof for proving A C B in Problem 3.9 will help
tremendously as you progress through Chapter 3.

Theorem 3.20 provides an excellent opportunity to showcase two different proof techniques. One
method is to prove the two set containments by “element chasing”. The second method involves
a chain of equality of sets. I recommend showcasing both approaches. For example, here is a one
sentence proof of Theorem 3.20.



Proof of Theorem 3.20. Let A and B be sets in some universe of discourse U. We see that

A\B={zeU|zx € Aand x ¢ B}
={reU|xze€Aand xz € B}
={xeU|xe AN B}
= AN B°.

For Theorems 3.21 and 3.22, I typically ask students to prove one of Parts (a) or (b).
Problem 3.23 is not necessary for later, but I find it to be a good exercise for students.

Problem 3.31 is time consuming, but extremely worthwhile. One shortcut you could take is telling
the students which parts are true versus false.

In my experience, Section 3.3 is probably the most challenging section in Chapter 3. For this
reason, I wouldn’t skip any of the easy exercises (e.g., Problems 3.33-3.3.37).

For Theorems 3.41 and 3.42, I typically ask students to prove one of Parts (a) or (b). For both
theorems, I encourage students to prove both set containments as opposed to attempting to chain
together equality of sets.

If you have planes to cover Chapters 7 or 8, you will need to cover at least parts of Section 3.5.
One can safely skip Theorem 3.56—Problem 3.62, but I enjoy covering this material if time
allows. Problem 3.61 is time consuming and provides a nice challenge for students. Problem 3.62
is also a fun challenge, but certainly isn’t necessary.

Chapter 4: Induction

Most instructors will likely cover Chapter 4. If your students already have some familiarity with
induction, you can probably find places to cut corners. However, in my experience, I find it best
to assume students know nothing about induction and give it a careful treatment.

After students tackle Theorem 4.2 (Principle of Mathematical Induction), I spend time discussing
Skeleton Proof 4.3 and then often present the first few induction proofs in order to set the
standard for what the proofs should look like. One potentially misleading aspect of Skeleton
Proof 4.3, is that students might think that are supposed to actually write “P(k)” and “P(k+1)”
in their proofs. I discourage this. Instead, I instruct students to write down whatever the actual
predicate is for P(k). For example, for the inductive step of the proof of Theorem 4.4, I would
want students to write, “Let k € N and assume Zlei = @ is true.” In fact, I think we can
safely omit the phrase “is true” and simply write, “Let k£ € N and assume Zlei = @.” If I
present a few induction proofs, we can iron out these details quickly.

Theorem 4.7 and Problem 4.8 provide an opportunity for students to wrestle with induction
proofs that are simply manipulation of strings of symbols. I highly recommend not skipping these
two. Problem 4.8 provided inspiration for the cover of the print version of the book.

While I make sure we witness a precise proof of Theorem 4.2, sometimes I might wave my hands
a bit and skimp on a rigorous proof of Theorem 4.9, which states that we do not need to start
induction at £ = 1. The proof of Theorem 4.9 is simply a clever adjustment to the proof of
Theorem 4.2.



I view Theorem 4.11 as essential, but you definitely do not need to assign all of Theorem 4.12—
4.23 as none of these are needed for later. I typically ask students to proof any two of Theo-
rem 4.12—4.23. Problem 4.24 is not essential but provides an excellent opportunity for students
to tinker and practice the skills they have developed.

The proof of Theorem 4.25 (Principle of Complete Mathematical Induction) often causes some
confusion for students. This provides a good opportunity to discuss the notion of “weaker” versus
“stronger” hypotheses. We know that The Principle of Mathematical Induction is true and this
theorem has weaker hypotheses than its complete analogue, and hence the Principle of Complete
Mathematical Induction must also be true. Emphasize to students that despite the name, complete
induction is not any stronger or more powerful than ordinary induction. One can prove that the
two notions are equivalent, but I’ve chosen not to formally ask students to prove this fact.

I suggest you pick and choose a few of Theorem 4.27—Problem 4.34 to have students to work on.
Note that Problem 4.34 involves the Fibonacci numbers, which are introduced in Problem 4.29.

The goal of Section 4.5 is to prove Theorem 4.38 (Well-Ordering Principle) and two generaliza-
tions that appear in Theorems 4.39 and 4.40. My intended proof of the Well-Ordering Principle
is to utilize Theorem 4.25 (Principle of Complete Mathematical Induction). This is a nice ap-
plication of induction. If you plan to cover Sections 5.1 or 6.1, you will need the Well-Ordering
Principle. Specifically, the Well-Ordering Principle is needed in the proofs of Theorems 6.6, 6.7,
and 6.13, and its generalization Theorem 4.40 is needed in the proof of Theorem 5.46. Note
that I have included the proof of Theorem 6.7 (Division Algorithm) in Chapter 6.

Chapter 5: The Real Numbers

Chapter 5 takes a deep dive into the structure of the real numbers by building up from a collection
of axioms. Most instructors will likely skip this chapter. None of the content in this chapter is
necessary later in the book. However, if you are interested in students experiencing a careful and
rigorous development of a mathematical topic, consider including Section 2.1 in your course.

Section 2.1 is essentially the content I cover at the beginning of the undergraduate real analysis
course that I teach. However, the material in this section is certainly appropriate for students in
an introduction to proof course. Technically, you could cover the content in Section 2.1 any time
after Chapter 4. The only reason Chapter 4 is necessary is because the generalization of the Well-
Ordering Principle given in Theorem 4.40 is needed in the proof of Theorem 5.46. Otherwise,
Section 2.1 only requires the proof techniques developed in Chapter 2 and general understanding
of sets that are covered in Chapter 3.

Section 2.2 develops the basics of the standard topology of the real numbers. This section is a lot
of fun! However, it’s not content that is traditionally covered in an introduction to proof course.
I have covered this material a few times in the past and in my experience students tend to enjoy
it. But it’s not easy! If you want to cover Section 2.2, you should also cover Section 2.1. There
is one theorem (namely, Theorem 5.59) in Section 2.2 whose recommended proof technique is
induction (covered in Chapter 4). Otherwise, only the content in Chapters 2 and 3 are needed in
Section 2.2.

Be warned that covering this chapter, even just Section 2.1, takes some time. Moreover, there
aren’t too many places you can cut corners. You could ask students to only prove a subset of the
results in Theorem 5.8 (although all of the results in this theorem are needed for later).



Chapter 6: Three Famous Theorems

As the title of the chapter implies, the goal of Chapter 6 is to tackle three main theorems with
some intermediate results along the way. In Section 6.1, we develop all of the concepts necessary
to state and then prove the Fundamental Theorem of Arithmetic (Theorem 6.17). To prove the
Fundamental Theorem of Arithmetic, my suggested proof makes use of the Division Algorithm
(Theorem 6.7), which in turn utilizes the Well-Ordering Principle (Theorem 4.38) from Chap-
ter 4. Note that I have included the proof of the Division Algorithm in the book. In Section 2.2,
we prove that v/2 is irrational, which settles a claim made in Section 5.1. In Section 6.3, the
final section, we prove that there are infinitely many primes.

None of these sections depend on one another and you could pick and choose which ones they
would like to cover. Moreover, you could cover them in any order. Sections 2.2 and 2.3 are
fairly straightforward for students, but in my experience, Section 2.1 is much more challenging
for students than you might expect. If you choose to cover Section 2.1, which I highly recommend,
plan on it taking longer than the number of pages might suggest. If I'm on schedule, I usually cover
all three sections. If I'm a little behind schedule, I might omit Section 6.1 but cover the other
two.

I've already given a substantial hint for Theorem 6.6, but students still struggle with this one.
Feel free to give them additional guidance. Theorem 6.13 (Special Case of Bézout’s Lemma) is
another one that students find difficult. My hint for this one is quite involved. You might need
to assist your students with digesting my hint. Theorem 6.15 (Euclid’s Lemma) is the final crux
in proving Theorem 6.17 (Fundamental Theorem of Arithmetic). Again, students struggle with
this one despite my hint. For Theorem 6.17 (Fundamental Theorem of Arithmetic) you might
need to remind students how to prove uniqueness (see Skeleton Proof 2.90 and the paragraph
that precedes it).

My suggested proof for Theorem 6.19 (/2 is irrational) generalizes nicely and leads to the proof
of Theorem 6.20.

Note that I've included the proof of Theorem 6.23. It’s worth pointing out to students that the
proof might be more involved than they would expect, given how trivial the theorem seems.

Problem 6.26 is a fun challenge for students, but definitely optional.

Chapter 7: Relations and Partitions

All the work we have done up to this point has laid the foundation for what will come in the
remainder of the book. In my view, Sections 7.1-7.3 mark a transition in the conceptual level of
the material presented in this book.

Section 7.1 introduces relations together with all the accompanying notation and terminology.
This section contains more examples than any other in the book. In addition, there are lots of
problems aimed at developing a deeper intuitive understanding of relations. You could skip some of
the easier problems, but be warned that some of them are referenced later (e.g., Problems 7.22 and
7.34). It’s up to you how much you want to focus on using digraphs/graphs as visual representations
of relations, but I find this to be a useful tool for students.

The notions of reflexive, symmetric, and transitive are introduced in Section 7.1, but we formally
introduce equivalence relations in Section 7.2. The main result of this section is Theorem 7.43,
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which leads to the definition of equivalence class. You could skip Problems 7.49 and 7.50, but
I find them to be a good test of student understanding. I have put these two problems on exams
(sometime simply as true/false questions) without ever having covered them explicitly.

Chapter 8: Functions

Chapter 9: Cardinality
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