Braid graphs in simply-laced triangle-free Coxeter systems are partial cubes

Part 1

ACGT

Dana C. Ernst Northern Arizona University November 2021

Awik, Barnes, Bidari, Breland, Cadman, Niemi, Sullivan, Wright

Coxeter Systems

Definition

A Coxeter system consists of a group W (called a Coxeter group) generated by a set S of involutions with presentation

$$W = \langle S \mid s^2 = e, (st)^{m(s,t)} = e \rangle,$$

where $m(s, t) \ge 2$ for $s \ne t$.

Comments

- The elements of *S* are distinct as group elements.
- m(s, t) is the order of st.

Coxeter Systems

Since s and t are involutions, the relation $(st)^{m(s,t)} = e$ can be rewritten:

$$m(s,t) = 2 \implies st = ts$$
 commutation relations $m(s,t) = 3 \implies sts = tst$ $m(s,t) = 4 \implies stst = tsts$ braid relations

This allows the replacement

$$\underbrace{sts\cdots}_{m(s,t)}\mapsto\underbrace{tst\cdots}_{m(s,t)}$$

in any word, which is called a commutation move if m(s,t)=2 and a braid move if $m(s,t)\geq 3$.

3

Coxeter Graphs

Definition

We can encode (W, S) with a unique Coxeter graph Γ having:

- Vertex set = S
- $\{s,t\}$ edge labeled with m(s,t) whenever $m(s,t) \ge 3$

Comments

- Typically labels of m(s, t) = 3 are omitted.
- Edges correspond to non-commuting pairs of generators.
- Given Γ , we can uniquely reconstruct the corresponding (W, S).

Coxeter Systems of Type A

Example

The Coxeter system of type A_n is defined by the following graph.

$$s_1$$
 s_2 s_3 s_{n-1} s_n

Then $W(A_n)$ is subject to:

- $s_i^2 = e$ for all i
- $s_i s_i = s_i s_i$ if |i j| > 1
- $s_i s_j s_i = s_j s_i s_j$ if |i j| = 1.

In this case, $W(A_n)$ is isomorphic to the symmetric group S_{n+1} under the correspondence $s_i \mapsto (i, i+1)$.

Coxeter Systems of Type D

Example

The Coxeter system of type D_n is defined by the following graph.

Then $W(D_n)$ is subject to:

- $s_i^2 = e$ for all i
- $s_i s_j = s_j s_i$ when |i j| > 1 and $3 \notin \{i, j\}$
- $s_i s_3 s_i = s_3 s_i s_3$ for $i \in \{1, 2, 4\}$
- $s_i s_j s_i = s_j s_i s_j$ when |i j| = 1 and $i, j \in \{4, 5, \dots, n\}$.

The group $W(D_n)$ is isomorphic to the index 2 subgroup of the group of signed permutations on n letters having an even number of sign changes.

Reduced Expressions & Matsumoto's Theorem

Definition

A word $\alpha = s_{x_1} s_{x_2} \cdots s_{x_m} \in S^*$ is called an expression for w if it is equal to w when considered as a group element. If m is minimal among all expressions for w, α is a called a reduced expression.

 $\mathcal{R}(w) = \text{set of reduced expressions for } w$

Reduced Expressions & Matsumoto's Theorem

Definition

A word $\alpha = s_{x_1} s_{x_2} \cdots s_{x_m} \in S^*$ is called an expression for w if it is equal to w when considered as a group element. If m is minimal among all expressions for w, α is a called a reduced expression.

$$\mathcal{R}(w) = \text{set of reduced expressions for } w$$

Matsumoto's Theorem

Any two reduced expressions for $w \in W$ differ by a sequence of commutation & braid moves.

Reduced Expressions & Matsumoto's Theorem

Definition

A word $\alpha = s_{x_1} s_{x_2} \cdots s_{x_m} \in S^*$ is called an expression for w if it is equal to w when considered as a group element. If m is minimal among all expressions for w, α is a called a reduced expression.

$$\mathcal{R}(w) = \text{set of reduced expressions for } w$$

Matsumoto's Theorem

Any two reduced expressions for $w \in W$ differ by a sequence of commutation & braid moves.

Definition

For $w \in W$, define the Matsumoto graph $\mathcal{M}(w)$ via:

- Vertex set = $\mathcal{R}(w)$
- $\{\alpha, \beta\}$ edge iff α and β are related via a single commutation or braid move

Matsumoto Graph

Example

Consider the reduced expression $\alpha=121321$ for $w\in W(A_3)$. Then $\mathcal{M}(w)$ is as follows:

Matsumoto Graph

Example

Here is the Matsumoto graph for the longest element in type A_4 .

Braid Equivalence & Braid Graphs

Definition

If $\alpha, \beta \in \mathcal{R}(w)$, then α and β are braid equivalent iff α and β are related by a sequence of braid moves.

Comments

- Braid equivalence is an equivalence relation.
- Equivalence classes are called braid classes, denoted $[\alpha]$.

Braid Equivalence & Braid Graphs

Definition

If $\alpha, \beta \in \mathcal{R}(w)$, then α and β are braid equivalent iff α and β are related by a sequence of braid moves.

Comments

- Braid equivalence is an equivalence relation.
- Equivalence classes are called braid classes, denoted $[\alpha]$.

Definition

We can encode a braid class $[\alpha]$ in a braid graph, denoted $\mathcal{B}(\alpha)$:

- Vertex set $= [\alpha]$
- ullet $\{\gamma,eta\}$ edge iff γ and eta are related via a single braid move

Braid graphs are the maximal turquoise connected components in the Matsumoto graph. Not to be confused with contracting the braid edges of a Matsumoto graph.

Example

Example

Each of the maximal green connected components in the following Matsumoto graph is a braid graph corresponding to a braid class.

Example

Consider the reduced expression $\alpha=31323431323$ for some $w\in W(D_4)$. Then $\mathcal{B}(\alpha)$ is as follows, where α is the vertex of degree 5.

Example

Consider the reduced expression $\alpha = 31323431323$ for some $w \in W(D_4)$. Then $\mathcal{B}(\alpha)$ is as follows, where α is the vertex of degree 5.

Big Picture Goal

Characterize the structure of braid classes/graphs with an aim at understanding the relationship among the reduced expressions for a group element.

Definition

Suppose α is a reduced expression for $w \in W$ consisting of m letters. Loosely speaking, α is link if there is a sequence of overlapping braid moves that "cover" the positions $1,2,\ldots,m$. If α is a link, then the corresponding braid class $[\alpha]$ is called a braid chain.

Definition

Suppose α is a reduced expression for $w \in W$ consisting of m letters. Loosely speaking, α is link if there is a sequence of overlapping braid moves that "cover" the positions $1, 2, \ldots, m$. If α is a link, then the corresponding braid class $[\alpha]$ is called a braid chain.

Example

Consider the reduced expression $\alpha = 343546576$ for some $w \in W(A_7)$.

In this example, every reduced expression is a link and the braid class is a braid chain.

Example

Let $\alpha = 3134323$ be a reduced expression for some $w \in W(D_4)$.

$$\overline{3134323}$$

Then α is a link and $[\alpha]$ is a braid chain. The corresponding braid graph is as follows, where α is the vertex of degree 3.

Example

Now, let $\alpha = 1213243676$ be a reduced expression for some $w \in W(A_7)$. It turns out that α is not a link, but rather a product of two links.

1213243 | 676

Example

Now, let $\alpha = 1213243676$ be a reduced expression for some $w \in W(A_7)$. It turns out that α is not a link, but rather a product of two links.

1213243 | 676

Braid Link Factorizations

Comments

- Every reduced expression factors uniquely into maximal links, called a braid link factorization.
- Describing the maximal links and their corresponding braid chains is tricky business!
- We have a nice characterization for triangle-free simply-laced Coxeter systems.

Theorem

If lpha is a reduced expression for $w \in W$ having braid link factorization

$$\alpha = \beta_1 \mid \beta_1 \mid \cdots \mid \beta_m,$$

then $\mathcal{B}(\alpha)$ is the box product of the braid graphs for each β_i .

Theorem

If α is a reduced expression for $w \in W$ having braid link factorization

$$\alpha = \beta_1 \mid \beta_1 \mid \cdots \mid \beta_m,$$

then $\mathcal{B}(\alpha)$ is the box product of the braid graphs for each β_i .

Comment

- The upshot is that if you want to understand the structure of braid graphs, you must first characterize the braid graphs for links.
- We've classified the braid graphs for links in types A_n and D_n (and others at least "in my head").
- In the case of type A_n , links have odd length and the corresponding braid graphs are paths.

Theorem (Fisher et al. → Bidari & Ernst)

If α is a reduced expression for $w \in W(A_n)$ having braid link factorization

$$\alpha = \beta_1 \mid \beta_2 \mid \cdots \mid \beta_m$$

such that each factor has $2k_i - 1$ generators, then

Example

Consider the following braid link factorization for a reduced expression for an element in $W(A_7)$.

$$\alpha = 121 \mid 434 \mid 65676$$

The resulting braid graph is shown below:

Fibonacci Links in Type D

Consider the Coxeter system of type D_4 . Let $\{a,b,c\}=\{1,2,4\}$. Every reduced expression that is braid equivalent to one of the following is called a Fibonacci link (in type D_4). The corresponding braid graph is depicted on the right.

Fibonacci Links in Type D

Consider the Coxeter system of type D_4 . Let $\{a, b, c\} = \{1, 2, 4\}$. Every reduced expression that is braid equivalent to one of the following is called a Fibonacci link (in type D_4). The corresponding braid graph is depicted on the right.

Each one of the graphs above corresponds to a Fibonacci cube graph!

Classification of Braid Graphs for Links in Type D

Theorem

In type D_n , every link is braid equivalent to either a "type A" link or a "type A extension" of a Fibonacci link. As a consequence, braid graphs for links in type D_n are either paths or "type A extensions" of braid graphs for Fibonacci links.

Choices for a, b, c determine whether we can extend; need 343 on an end.

Classification of Braid Graphs for Links in Type D

Theorem

In type D_n , every link is braid equivalent to either a "type A" link or a "type A extension" of a Fibonacci link. As a consequence, braid graphs for links in type D_n are either paths or "type A extensions" of braid graphs for Fibonacci links.

Choices for a, b, c determine whether we can extend; need 343 on an end.

Examples

Classification of Braid Graphs in Type D

Theorem

In type D_n , every braid graph is a box product of paths or "type A extensions" of braid graphs for Fibonacci links.

Classification of Braid Graphs in Type D

Theorem

In type D_n , every braid graph is a box product of paths or "type A extensions" of braid graphs for Fibonacci links.

Example

$$lpha =$$
 453431323 | 56576 | 898