Braid graphs in simply-laced triangle-free Coxeter systems are partial cubes Part 1 #### **ACGT** Dana C. Ernst Northern Arizona University November 2021 Awik, Barnes, Bidari, Breland, Cadman, Niemi, Sullivan, Wright # Coxeter Systems ### Definition A Coxeter system consists of a group W (called a Coxeter group) generated by a set S of involutions with presentation $$W = \langle S \mid s^2 = e, (st)^{m(s,t)} = e \rangle,$$ where $m(s, t) \ge 2$ for $s \ne t$. #### Comments - The elements of *S* are distinct as group elements. - m(s, t) is the order of st. # **Coxeter Systems** Since s and t are involutions, the relation $(st)^{m(s,t)} = e$ can be rewritten: $$m(s,t) = 2 \implies st = ts$$ commutation relations $m(s,t) = 3 \implies sts = tst$ $m(s,t) = 4 \implies stst = tsts$ braid relations This allows the replacement $$\underbrace{sts\cdots}_{m(s,t)}\mapsto\underbrace{tst\cdots}_{m(s,t)}$$ in any word, which is called a commutation move if m(s,t)=2 and a braid move if $m(s,t)\geq 3$. 3 # **Coxeter Graphs** #### **Definition** We can encode (W, S) with a unique Coxeter graph Γ having: - Vertex set = S - $\{s,t\}$ edge labeled with m(s,t) whenever $m(s,t) \ge 3$ #### Comments - Typically labels of m(s, t) = 3 are omitted. - Edges correspond to non-commuting pairs of generators. - Given Γ , we can uniquely reconstruct the corresponding (W, S). # Coxeter Systems of Type A ## **Example** The Coxeter system of type A_n is defined by the following graph. $$s_1$$ s_2 s_3 s_{n-1} s_n Then $W(A_n)$ is subject to: - $s_i^2 = e$ for all i - $s_i s_i = s_i s_i$ if |i j| > 1 - $s_i s_j s_i = s_j s_i s_j$ if |i j| = 1. In this case, $W(A_n)$ is isomorphic to the symmetric group S_{n+1} under the correspondence $s_i \mapsto (i, i+1)$. # Coxeter Systems of Type D ## Example The Coxeter system of type D_n is defined by the following graph. Then $W(D_n)$ is subject to: - $s_i^2 = e$ for all i - $s_i s_j = s_j s_i$ when |i j| > 1 and $3 \notin \{i, j\}$ - $s_i s_3 s_i = s_3 s_i s_3$ for $i \in \{1, 2, 4\}$ - $s_i s_j s_i = s_j s_i s_j$ when |i j| = 1 and $i, j \in \{4, 5, \dots, n\}$. The group $W(D_n)$ is isomorphic to the index 2 subgroup of the group of signed permutations on n letters having an even number of sign changes. # Reduced Expressions & Matsumoto's Theorem #### Definition A word $\alpha = s_{x_1} s_{x_2} \cdots s_{x_m} \in S^*$ is called an expression for w if it is equal to w when considered as a group element. If m is minimal among all expressions for w, α is a called a reduced expression. $\mathcal{R}(w) = \text{set of reduced expressions for } w$ # Reduced Expressions & Matsumoto's Theorem ## Definition A word $\alpha = s_{x_1} s_{x_2} \cdots s_{x_m} \in S^*$ is called an expression for w if it is equal to w when considered as a group element. If m is minimal among all expressions for w, α is a called a reduced expression. $$\mathcal{R}(w) = \text{set of reduced expressions for } w$$ #### Matsumoto's Theorem Any two reduced expressions for $w \in W$ differ by a sequence of commutation & braid moves. # Reduced Expressions & Matsumoto's Theorem #### Definition A word $\alpha = s_{x_1} s_{x_2} \cdots s_{x_m} \in S^*$ is called an expression for w if it is equal to w when considered as a group element. If m is minimal among all expressions for w, α is a called a reduced expression. $$\mathcal{R}(w) = \text{set of reduced expressions for } w$$ #### Matsumoto's Theorem Any two reduced expressions for $w \in W$ differ by a sequence of commutation & braid moves. #### Definition For $w \in W$, define the Matsumoto graph $\mathcal{M}(w)$ via: - Vertex set = $\mathcal{R}(w)$ - $\{\alpha, \beta\}$ edge iff α and β are related via a single commutation or braid move # Matsumoto Graph ## **Example** Consider the reduced expression $\alpha=121321$ for $w\in W(A_3)$. Then $\mathcal{M}(w)$ is as follows: # Matsumoto Graph # Example Here is the Matsumoto graph for the longest element in type A_4 . # **Braid Equivalence & Braid Graphs** ## Definition If $\alpha, \beta \in \mathcal{R}(w)$, then α and β are braid equivalent iff α and β are related by a sequence of braid moves. ## Comments - Braid equivalence is an equivalence relation. - Equivalence classes are called braid classes, denoted $[\alpha]$. # **Braid Equivalence & Braid Graphs** #### Definition If $\alpha, \beta \in \mathcal{R}(w)$, then α and β are braid equivalent iff α and β are related by a sequence of braid moves. ### Comments - Braid equivalence is an equivalence relation. - Equivalence classes are called braid classes, denoted $[\alpha]$. #### Definition We can encode a braid class $[\alpha]$ in a braid graph, denoted $\mathcal{B}(\alpha)$: - Vertex set $= [\alpha]$ - ullet $\{\gamma,eta\}$ edge iff γ and eta are related via a single braid move Braid graphs are the maximal turquoise connected components in the Matsumoto graph. Not to be confused with contracting the braid edges of a Matsumoto graph. ## **Example** ## **Example** Each of the maximal green connected components in the following Matsumoto graph is a braid graph corresponding to a braid class. # Example Consider the reduced expression $\alpha=31323431323$ for some $w\in W(D_4)$. Then $\mathcal{B}(\alpha)$ is as follows, where α is the vertex of degree 5. ## **Example** Consider the reduced expression $\alpha = 31323431323$ for some $w \in W(D_4)$. Then $\mathcal{B}(\alpha)$ is as follows, where α is the vertex of degree 5. ## **Big Picture Goal** Characterize the structure of braid classes/graphs with an aim at understanding the relationship among the reduced expressions for a group element. #### Definition Suppose α is a reduced expression for $w \in W$ consisting of m letters. Loosely speaking, α is link if there is a sequence of overlapping braid moves that "cover" the positions $1,2,\ldots,m$. If α is a link, then the corresponding braid class $[\alpha]$ is called a braid chain. #### Definition Suppose α is a reduced expression for $w \in W$ consisting of m letters. Loosely speaking, α is link if there is a sequence of overlapping braid moves that "cover" the positions $1, 2, \ldots, m$. If α is a link, then the corresponding braid class $[\alpha]$ is called a braid chain. ## **Example** Consider the reduced expression $\alpha = 343546576$ for some $w \in W(A_7)$. In this example, every reduced expression is a link and the braid class is a braid chain. ## **Example** Let $\alpha = 3134323$ be a reduced expression for some $w \in W(D_4)$. $$\overline{3134323}$$ Then α is a link and $[\alpha]$ is a braid chain. The corresponding braid graph is as follows, where α is the vertex of degree 3. ## **Example** Now, let $\alpha = 1213243676$ be a reduced expression for some $w \in W(A_7)$. It turns out that α is not a link, but rather a product of two links. 1213243 | 676 ## Example Now, let $\alpha = 1213243676$ be a reduced expression for some $w \in W(A_7)$. It turns out that α is not a link, but rather a product of two links. 1213243 | 676 ## **Braid Link Factorizations** ## Comments - Every reduced expression factors uniquely into maximal links, called a braid link factorization. - Describing the maximal links and their corresponding braid chains is tricky business! - We have a nice characterization for triangle-free simply-laced Coxeter systems. #### **Theorem** If lpha is a reduced expression for $w \in W$ having braid link factorization $$\alpha = \beta_1 \mid \beta_1 \mid \cdots \mid \beta_m,$$ then $\mathcal{B}(\alpha)$ is the box product of the braid graphs for each β_i . #### **Theorem** If α is a reduced expression for $w \in W$ having braid link factorization $$\alpha = \beta_1 \mid \beta_1 \mid \cdots \mid \beta_m,$$ then $\mathcal{B}(\alpha)$ is the box product of the braid graphs for each β_i . #### Comment - The upshot is that if you want to understand the structure of braid graphs, you must first characterize the braid graphs for links. - We've classified the braid graphs for links in types A_n and D_n (and others at least "in my head"). - In the case of type A_n , links have odd length and the corresponding braid graphs are paths. ## Theorem (Fisher et al. → Bidari & Ernst) If α is a reduced expression for $w \in W(A_n)$ having braid link factorization $$\alpha = \beta_1 \mid \beta_2 \mid \cdots \mid \beta_m$$ such that each factor has $2k_i - 1$ generators, then ## Example Consider the following braid link factorization for a reduced expression for an element in $W(A_7)$. $$\alpha = 121 \mid 434 \mid 65676$$ The resulting braid graph is shown below: # Fibonacci Links in Type D Consider the Coxeter system of type D_4 . Let $\{a,b,c\}=\{1,2,4\}$. Every reduced expression that is braid equivalent to one of the following is called a Fibonacci link (in type D_4). The corresponding braid graph is depicted on the right. # Fibonacci Links in Type D Consider the Coxeter system of type D_4 . Let $\{a, b, c\} = \{1, 2, 4\}$. Every reduced expression that is braid equivalent to one of the following is called a Fibonacci link (in type D_4). The corresponding braid graph is depicted on the right. Each one of the graphs above corresponds to a Fibonacci cube graph! # Classification of Braid Graphs for Links in Type D #### **Theorem** In type D_n , every link is braid equivalent to either a "type A" link or a "type A extension" of a Fibonacci link. As a consequence, braid graphs for links in type D_n are either paths or "type A extensions" of braid graphs for Fibonacci links. Choices for a, b, c determine whether we can extend; need 343 on an end. # Classification of Braid Graphs for Links in Type D #### **Theorem** In type D_n , every link is braid equivalent to either a "type A" link or a "type A extension" of a Fibonacci link. As a consequence, braid graphs for links in type D_n are either paths or "type A extensions" of braid graphs for Fibonacci links. Choices for a, b, c determine whether we can extend; need 343 on an end. ## **Examples** # Classification of Braid Graphs in Type D ## Theorem In type D_n , every braid graph is a box product of paths or "type A extensions" of braid graphs for Fibonacci links. # Classification of Braid Graphs in Type D #### **Theorem** In type D_n , every braid graph is a box product of paths or "type A extensions" of braid graphs for Fibonacci links. ## **Example** $$lpha =$$ 453431323 | 56576 | 898