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Graph Theory

• We assume collection of vertices V is nonempty and finite.

• A geodesic of a graph is a shortest path between two vertices. The

geodetic closure I [P] of a subset P ⊆ V consists of the vertices along the

geodesics connecting two vertices in P.

• A subset P ⊆ V is called (geodetically) convex if it contains all vertices

along the geodesics connecting two vertices of P.

• The convex hull of P is defined via

[P] :=
⋂
{K | P ⊆ K ,K is convex}

and is the smallest convex set containing P.

• We say that a subset P of vertices is generating if [P] = V .
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Geodetic Closure vs Convex Hull

Comments

• Despite the name, geodetic closure is not necessarily a closure operator

because it may not be idempotent. To make a closure operator, we need

to iterate the geodetic closure function until the result stabilizes.

• Convex hull is this closure operator.

Example

Consider the complete bipartite graph K2,3.
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Maximal Nongenerating Sets

Definition

The family of maximal nongenerating sets of a graph G is denoted by N (G).

That is, N (G) := {N ⊆ V | [N] 6= V but for all v /∈ N, [N ∪ {v}] = V }.

Example

Consider the cycle graph C4 and the diamond graph G .

a b

cd

a b

cd

C4 G

The maximal nongenerating subsets of C4 are {a, b}, {b, c}, {c, d}, {a, d}. On

the other hand, the maximal nongenerating sets of the diamond graph are

{a, b, c} and {a, c, d}.
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Game Definitions

Definition

For each of the games, we play on a graph G = (V ,E). Two players take turns

selecting previously unselected vertices until certain conditions are met.

• For the achievement game generate GEN(G), the game ends as soon as

[P] = V . That is, the player who generates the whole vertex set first wins.

• For the avoidance game do not generate DNG(G), all positions P must

satisfy [P] 6= V . The player who cannot select a vertex without generating

the vertex set loses.

4



Example

Consider the wheel graph W5. Below is a “representative” game digraph for

DNG(W5). Note: Positions can never contain antipodal “rim” vertices.

∗1 ∗0
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Example

Below is a “representative” game digraph for GEN(W5).
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Similar Games

Comments

Similar games have been considered by several authors, including

Buckley/Harary, Fraenkel/Harary, Necascova, Haynes/Henning/Tiller, and

Wang. These variations differ in at least one of the following:

• The collection of vertices generated by the selected vertices corresponds to

the geodetic closure as opposed to the convex hull. (Buckley/Harary)

• The generated vertices of the selected vertices are not available as moves.

The games we study are a generalization of the achievement and avoidance

games played on groups introduced by Anderson/Harary and extensively

studied by Benesh/Ernst/Sieben.
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“This one is easy.” – Sergei Kuznetsov

Comments

The games DNG(G) and GEN(G) are completely determined by N (G).

• The set of terminal positions of DNG(G) is N (G).

• A subset P ⊆ V is a position of GEN(G) if and only if P \ {v} ⊆ N for

some v ∈ V and N ∈ N (G).

The following theorem quickly handles the determination of the nim-number for

DNG(G) for several families of graphs.

Theorem (BEMSS)

If G is a graph and every element of N (G) has the same parity r ∈ {0, 1}, then

the nim-number of DNG(G) is r .
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Complete Graphs

Theorem (BEMSS)

For the complete graph Kn, we have:

• N (Kn) = {V \ {v} | v ∈ V }.

• nim(DNG(Kn)) = pty(n − 1).

Proof. This follows from “This one is easy” since every position of N (Kn)

has the same parity.

• nim(GEN(Kn)) = pty(n).

Proof. The only way to generate V is to select each vertex. If n is even,

the second player wins by random play. If n is odd, the second player wins

GEN(Kn) + ∗1 again by random play.
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Trees, Path Graphs, & Star Graphs

Theorem (BEMSS)

If T is a tree with set of leaves of L, then we have:

• N (T ) = {{l}c | l ∈ L}.

• nim(DNG(T )) = pty(|V |−1).

Proof. Again, this follows from “This one is easy” since every position of

N (Kn) has the same parity.

• nim(GEN(T )) = pty(V ).

Proof. One approach is to use structural induction on the diagram that

results from structure equivalence.
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Cycle Graphs

Theorem (BEMSS)

For the cycle graph Cn (n ≥ 3), assume V = Zn and E = {{i , i + 1} | i ∈ V }.

• N (Cn) =

{{i + 1, . . . , i + (n + 1)/2} | i ∈ V }, if n odd

{{i + 1, . . . , i + n/2} | i ∈ V }, if n even .

• nim(DNG(Cn)) =

1, if n ≡4 1, 2

0, if n ≡4 3, 0.

Proof. Surprise! . . . “This one is easy” (some thought required to

determine parity).

• nim(GEN(Cn)) = pty(n).

Proof. If n is even, then 2nd player wins in 2nd move by selecting the

antipodal vertex. If n is odd, then 1st player wins on 3rd move by selecting

a vertex in the “middle” of the larger group of unselected vertices.
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Hypercube Graphs

Theorem (BEMSS)

For the hypercube graph Qn (binary strings vertices connected by an edge

exactly when they differ by a single digit), we have:

• For n ≥ 2, N (Qn) is collection of sets consisting of vertices agreeing on a

fixed entry.

• nim(DNG(Qn)) = 0.

Proof. Note that Q1 = K1, so the result follows from earlier theorem. For

n ≥ 2, every set in N (Qn) has size 2n−1, so the result follows from “This

one is easy”.

• nim(GEN(Qn)) = 0.

Proof. The 2nd player wins by selecting the antipodal vertex to the choice

of 1st player, and every antipodal pair forms a minimal generating set.
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Complete Bipartite Graphs

Theorem (BEMSS)

Consider the complete bipartite graph Km,n where n ≥ m ≥ 2 with the set V of

vertices partitioned into A = {a1, . . . , am} and B = {b1, . . . , bn}. Then:

• N (Km,n) = {{ai , bj} | ai ∈ A, bj ∈ B}.

• nim(DNG(Km,n)) = 0.

Proof. “This one is easy” since every position of N (Km,n) has size two.

• nim(GEN(Km,n)) = 0.

Proof. The 2nd player wins on their first turn by selecting a vertex in the

same part as the 1st player.
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Wheel Graphs

Theorem (BEMSS)

We define the wheel graph Wn (n ≥ 5) to be graph with V = {v1, . . . , vn−1, c},
where c is the center and vi is adjacent to vi+1 (considered modulo n − 1).

• N (Wn) = complements of sets containing 2 neighboring “rim” vertices.

• nim(DNG(Wn)) = pty(n).

Proof. Each set in N (Wn) has size n − 2, so . . . “This one is easy”.

• nim(GEN(Wn)) =

2, n = 5

pty(n), n ≥ 6.

Proof. The case involving n = 5 handled separately. When n ≥ 6 and

even, not hard to argue that 2nd player has winning strategy. When n ≥ 7

and odd, 2nd player has a winning strategy in the game GEN(Wn) + ∗1
using a pairing strategy until near end of game (complicated case analysis).
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But wait, there’s more!

Comments

• We have obtained general results concerning maximal nongenerating sets

for disjoint unions of graphs, 1-clique sums of graphs, and products of

graphs. Except in some specialized circumstances, there do not seem to be

straightforward results concerning nim-numbers for any of these situations.

• We have obtained nim-numbers for generalized windmill graphs, complete

multipartite graphs.

• In many instances (e.g., complete graphs, trees, cycles, wheel graphs),

geodetic closure is the same as convex hull of a set. In these cases, we

have also settled the Buckley/Harary versions of the game. Not true for

hypercube graphs and complete bipartite graphs.

• We have also obtained analogous results for the complementary

“removing” games Terminate and Do Not Terminate.

Conjecture

We conjecture that the spectrum of nim-numbers for GEN and DNG is

N ∪ {0}. We have examples of graphs that exhibit ∗0, ∗1, ∗2, ∗3, ∗4, ∗5, ∗6, ∗7.
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Example

If G is the following graph, then DNG(G) = ∗5.
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Frattini Subset

Recall that the Frattini subgroup of a group G is the intersection of all

maximal subgroups of G . We make the analogous definition in terms of

maximal nongenerating sets of a graph

Definition

We define the Frattini subset of a graph G via Φ(G) :=
⋂
N (G).

The Frattini subgroup is equivalently defined as the collection of nongenerators

of the group. Indeed, we have the analogous theorem for graphs.

Definition

A vertex v is called a nongenerator if for all subsets S of vertices, [S ] = V

implies [S \ {v}] = V .

Theorem (BEMSS)

The set of nongenerators of a graph G is the Frattini subset Φ(G).
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Frattini Subset (continued)

Example

Recall that the maximal nongenerating subsets of C4 and the diamond graph

are {a, b}, {b, c}, {c, d}, {a, d} and {a, b, c}, {a, c, d}, respectively.

a b

cd

a b

cd

C4 G

Hence the corresponding Frattini subsets are ∅ and {a, c}, respectively.

Open Problem

Is the Frattini subset related to known graph-theoretic concepts? Possibly

related to “minimal eccentricity approximating spanning trees”???

18



Frattini Subset (continued)

In some more complicated situations (e.g., 2-dimensional lattice graphs), our

method of attack involves simplifying game digraph by partitioning the

collection of positions into so-called structure classes where both the option

relationship between positions and the corresponding nim-numbers are

compatible with structure equivalence according to parity.

Theorem (BEMSS)

• For both games, the starting position ∅ is always contained in structure

class containing the Frattini subset Φ(G).

• In each case, the nim-number of the game equals the nim-number of the

even-parity positions contained in the structure class containing Φ(G).
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Example

Below are the “simplified” structure diagrams for two cases of DNG(Pn�Pm) .
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(i) n and m odd (ii) pty(n) 6= pty(m) & neither is 2
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Two-dimensional Lattice Graphs

Theorem (BEMSS)

For the 2-dimensional lattice graph Pn�Pm, we have:

• The maximal nongenerating sets for Pn�Pm correspond to the complement

of the vertices lying along one of the 4 exterior sides of the grid.

• Φ(Pn�Pm) is the “interior” of the grid.

• nim(DNG(Pn�Pm)) =

0, if pty(n) = pty(m) or min{m, n} = 2

2, otherwise.

• nim(GEN(Pn�Pm)) =

0, if n or m is even

1, if n and m are odd.

• Proofs for both involve structural induction.
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