Homework X

Discrete Mathematics
This assignment is optional. If you choose to complete it, your score will either replace a current missing assignment or replace your current lowest homework score (if the score on this assignment is higher than your lowest homework score).

Please review the Rules of the Game from the syllabus. Reviewing material from previous courses and looking up definitions and theorems you may have forgotten is fair game. Since mathematical reasoning, problem solving, and critical thinking skills are part of the learning outcomes of this course, all assignments should be prepared by the student. Developing strong competencies in this area will prepare you to be a lifelong learner and give you an edge in a competitive workplace. When it comes to completing assignments for this course, unless explicitly told otherwise, you should not look to resources outside the context of this course for help. That is, you should not be consulting the web (e.g., Chegg and Course Hero), generative artificial intelligence tools (e.g., ChatGPT), mathematics assistive technologies (e.g., Wolfram Alpha and Photomath), other texts, other faculty, or students outside of our course in an attempt to find solutions to the problems you are assigned. On the other hand, you may use each other, the textbook, me, and your own intuition. You are highly encouraged to seek out assistance by asking questions in our Q\&A Discussion Board in Canvas. You are allowed and encouraged to work together on homework. Yet, each student is expected to turn in their own work. If you feel you need additional resources, please come talk to me and we will come up with an appropriate plan of action.

In general, late homework will not be accepted. However, you are allowed to turn in up to three late homework assignments. Unless you have made arrangements in advance with me, homework turned in after class will be considered late.

Complete the following problems. Unless explicitly stated otherwise, you are expected to justify your answers. In many problems this means that you should use words to describe what you are doing and why. In other problems, simply providing sufficient arithmetic may be sufficient. If a problem asks you to count something, please box your final answer.

1. Prove that the Fibonacci numbers satisfy $f_{2}+f_{4}+\cdots+f_{2 n}=f_{2 n+1}-1$ for all $n \geq 1$.
2. Show that 4^{n} is a solution to the recurrence relation $a_{n}=3 a_{n-1}+4 a_{n-2}$.
3. Solve the recurrence relation $a_{n}=a_{n-1}+(2 n-1)$ with $a_{1}=1$.
4. Solve the recurrence relation $a_{n}=a_{n-1}+2^{n}$ with $a_{0}=5$.
5. Given a second-order linear constant-coefficient homogeneous recurrence relation $a_{n}=c_{1} a_{n-1}+$ $c_{2} a_{n-2}$, the solution described in Theorem 6.18 only works if there are two distinct roots of the corresponding equation. It turns out if there is a repeated characteristic root r (i.e., the characteristic equation can be factored as $0=(x-r)^{2}$, so that r is the only characteristic root), then the solution to the recurrence relation is

$$
a_{n}=a r^{n}+b n r^{n},
$$

where a and b are constants determined by the initial conditions. Assuming this result, solve the recurrence relation $a_{n}=6 a_{n-1}-9 a_{n-2}$ with initial conditions $a_{0}=1$ and $a_{1}=4$.
6. Complete one of the following. Hint: What is Dana's favorite sequence?
(a) We say that a non-attacking rook arrangement on an $n \times n$ chessboard is medium-high-low-avoiding if when scanning the heights of the rooks from left to right, for each rook a we never see both a rook b to the right (not necessarily consecutively) that is higher than a followed (not necessarily consecutively) by a rook c that is lower than both a and b. For example, consider the non-attacking rook arrangements given below. The arrangement on the left has a few occurrences of a medium-high-low pattern, namely involving columns $1,2,5$; columns $1,3,5$; columns $1,4,5$; columns $2,3,4$; columns $2,3,5$. On the other hand, the arrangement on the right is medium-high-low-avoiding.

How many medium-high-low-avoiding non-attacking rook arrangements are there on an $n \times n$ chessboard?
(b) Consider a rectangle with n nodes across the top edge and n nodes across the bottom edge. A Temperley-Lieb n-diagram in the rectangle consists of n edges connecting the $2 n$ nodes such that:

- each edge connects a pair of nodes,
- each node is connected to exactly one edge,
- the edges must be drawn inside the rectangle,
- none of the edges are allowed to cross or touch.

Below is an example of a 6 -diagram.

Let $\operatorname{TL}(n)$ denote the collection of n-diagrams. How many n-diagrams are in $T L(n)$?

