An Inquiry-Based Approach to Abstract Algebra

Dana C. Ernst, PhD
Northern Arizona University

Fall 2019

(c) 2019 Dana C. Ernst. Some Rights Reserved.

This book is intended to be a task sequence for an undergraduate abstract algebra course that utilizes an inquiry-based learning (IBL) approach. You can find the most up-to-date version of these notes on GitHub:

```
http://dcernst.github.io/IBL-AbstractAlgebra/
```

I would be thrilled if you used these notes and improved them. If you make any modifications, you can either make a pull request on GitHub or submit the improvements via email. You are also welcome to fork the source and modify the notes for your purposes as long as you maintain the license below.

This work is licensed under the Creative Commons Attribution-Share Alike 4.0 United States License. You may copy, distribute, display, and perform this copyrighted work, but only if you give credit to Dana C. Ernst, and all derivative works based upon it must be published under the Creative Commons Attribution-Share Alike 4.0 International License. Please attribute this work to Dana C. Ernst, Mathematics Faculty at Northern Arizona University, dana.ernst@nau.edu. To view a copy of this license, visit
https://creativecommons.org/licenses/by-sa/4.0/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

(1)(0)

Here is a partial list of people (in alphabetical order by last name) that I need to thank for supplying content, advice, and feedback.

- Joshua Bowman (Pepperdine University). The Preface is a modified version of Joshua's An IBL preface.
- Nathan Carter (Bentley University). Nathan's excellent book Visual Group Theory has had a huge impact on my approach to teaching abstract algebra.
- Anders Hendrickson (St. Norbert College). Anders is the original author of the content in Appendix A: Elements of Style for Proofs. The current version in Appendix A is a result of modifications made by myself with some suggestions from Dave Richeson.
- Dave Richeson (Dickinson College). Dave is responsible for much of the content in Appendix B: Fancy Mathematical Terms and Appendix C: Definitions in Mathematics.
- Josh Wiscons (CSU Sacramento) and Ben Woodruff (BYU Idaho). In the early stages of development, Josh and Ben were instrumental the development of these notes.

Contents

Preface 4
1 Introduction 5
1.1 What is Abstract Algebra? 5
1.2 An Inquiry-Based Approach 5
1.3 Rules of the Game 6
1.4 Structure of the Notes 7
1.5 Some Minimal Guidance 7
2 An Introduction to Groups 9
2.1 A First Example 9
2.2 Binary Operations 15
2.3 Groups 18
2.4 Generating Sets 21
2.5 Group Tables 23
2.6 Cayley Diagrams 25
3 Subgroups and Isomorphisms 34
3.1 Subgroups 34
3.2 Subgroup Lattices 39
3.3 Isomorphisms 43
4 Families of Groups 52
4.1 Cyclic Groups 52
4.2 Dihedral Groups 59
4.3 Symmetric Groups 60
4.4 Alternating Groups 68
5 Cosets, Lagrange's Theorem, and Normal Subgroups 71
5.1 Cosets 71
5.2 Lagrange's Theorem 76
5.3 Normal Subgroups 77
6 Products and Quotients of Groups 80
6.1 Products of Groups 80
6.2 Quotients of Groups 84
7 Homomorphisms and the Isomorphism Theorems 90
7.1 Homomorphisms 90
7.2 The Isomorphism Theorems 93
8 An Introduction to Rings 95
8.1 Definitions and Examples 95
8.2 Ring Homomorphisms 99
8.3 Ideals and Quotient Rings 100
8.4 Maximal and Prime Ideals 103
A Elements of Style for Proofs 105
B Fancy Mathematical Terms 110
C Definitions in Mathematics 112

Preface

You are the creators. This book is a guide
This book will not show you how to solve all the problems that are presented, but it should enable you to find solutions, on your own and working together. The material you are about to study did not come together fully formed at a single moment in history. It was composed gradually over the course of centuries, with various mathematicians building on the work of others, improving the subject while increasing its breadth and depth.

Mathematics is essentially a human endeavor. Whatever you may believe about the true nature of mathematics-does it exist eternally in a transcendent Platonic realm, or is it contingent upon our shared human consciousness? is math "invented" or "discovered"?our experience of mathematics is temporal, personal, and communal. Like music, mathematics that is encountered only as symbols on a page remains inert. Like music, mathematics must be created in the moment, and it takes time and practice to master each piece. The creation of mathematics takes place in writing, in conversations, in explanations, and most profoundly in the mental construction of its edifices on the basis of reason and observation.

To continue the musical analogy, you might think of these notes like a performer's score. Much is included to direct you towards particular ideas, but much is missing that can only be supplied by you: participation in the creative process that will make those ideas come alive. Moreover, your success will depend on the pursuit of both individual excellence and collective achievement. Like a musician in an orchestra, you should bring your best work and be prepared to blend it with others' contributions.

In any act of creation, there must be room for experimentation, and thus allowance for mistakes, even failure. A key goal of our community is that we support each othersharpening each other's thinking but also bolstering each other's confidence-so that we can make failure a productive experience. Mistakes are inevitable, and they should not be an obstacle to further progress. It's normal to struggle and be confused as you work through new material. Accepting that means you can keep working even while feeling stuck, until you overcome and reach even greater accomplishments.

This book is a guide. You are the creators.

Chapter 1

Introduction

1.1 What is Abstract Algebra?

Abstract

algebra is the subject area of mathematics that studies algebraic structures, such as groups, rings, fields, modules, vector spaces, and algebras. This course is an introduction to abstract algebra. We will spend most of our time studying groups. Group theory is the study of symmetry, and is one of the most beautiful areas in all of mathematics. It arises in puzzles, visual arts, music, nature, the physical and life sciences, computer science, cryptography, and of course, throughout mathematics. This course will cover the basic concepts of group theory, and a special effort will be made to emphasize the intuition behind the concepts and motivate the subject matter. In the last few weeks of the semester, we will also introduce rings and fields.

1.2 An Inquiry-Based Approach

In a typical course, math or otherwise, you sit and listen to a lecture. (Hopefully) These lectures are polished and well-delivered. You may have often been lured into believing that the instructor has opened up your head and is pouring knowledge into it. I absolutely love lecturing and I do believe there is value in it, but I also believe that in reality most students do not learn by simply listening. You must be active in the learning process. I'm sure each of you have said to yourselves, "Hmmm, I understood this concept when the professor was going over it, but now that I am alone, I am lost." In order to promote a more active participation in your learning, we will incorporate ideas from an educational philosophy called inquiry-based learning (IBL).

Loosely speaking, IBL is a student-centered method of teaching mathematics that engages students in sense-making activities. Students are given tasks requiring them to solve problems, conjecture, experiment, explore, create, communicate. Rather than showing facts or a clear, smooth path to a solution, the instructor guides and mentors students via well-crafted problems through an adventure in mathematical discovery. Effective IBL courses encourage deep engagement in rich mathematical activities and provide opportunities to collaborate with peers (either through class presentations or group-oriented work).

Perhaps this is sufficiently vague, but I believe that there are two essential elements to IBL. Students should as much as possible be responsible for:

1. Guiding the acquisition of knowledge, and
2. Validating the ideas presented. That is, students should not be looking to the instructor as the sole authority.

For additional information, check out my blog post, What the Heck is IBL?
Much of the course will be devoted to students proving theorems on the board and a significant portion of your grade will be determined by how much mathematics you produce. I use the word "produce" because I believe that the best way to learn mathematics is by doing mathematics. Someone cannot master a musical instrument or a martial art by simply watching, and in a similar fashion, you cannot master mathematics by simply watching; you must do mathematics!

Furthermore, it is important to understand that proving theorems is difficult and takes time. You should not expect to complete a single proof in 10 minutes. Sometimes, you might have to stare at the statement for an hour before even understanding how to get started.

In this course, everyone will be required to

- read and interact with course notes on your own;
- write up quality proofs to assigned problems;
- present proofs on the board to the rest of the class;
- participate in discussions centered around a student's presented proof;
- call upon your own prodigious mental faculties to respond in flexible, thoughtful, and creative ways to problems that may seem unfamiliar on first glance.

As the semester progresses, it should become clear to you what the expectations are. This will be new to many of you and there may be some growing pains associated with it.

Lastly, it is highly important to respect learning and to respect other people's ideas. Whether you disagree or agree, please praise and encourage your fellow classmates. Use ideas from others as a starting point rather than something to be judgmental about. Judgement is not the same as being judgmental. Helpfulness, encouragement, and compassion are highly valued.

1.3 Rules of the Game

You should not look to resources outside the context of this course for help. That is, you should not be consulting the Internet, other texts, other faculty, or students outside of our course. On the other hand, you may use each other, the course notes, me, and your own intuition. In this class, earnest failure outweighs counterfeit success; you need not feel pressure to hunt for solutions outside your own creative and intellectual reserves. For more details, check out the Syllabus.

1.4 Structure of the Notes

As you read the notes, you will be required to digest the material in a meaningful way. It is your responsibility to read and understand new definitions and their related concepts. However, you will be supported in this sometimes difficult endeavor. In addition, you will be asked to complete problems aimed at solidifying your understanding of the material. Most importantly, you will be asked to make conjectures, produce counterexamples, and prove theorems.

The items labeled as Definition and Example are meant to be read and digested. However, the items labeled as Problem, Theorem, and Corollary require action on your part. Items labeled as Problem are sort of a mixed bag. Some Problems are computational in nature and aimed at improving your understanding of a particular concept while others ask you to provide a counterexample for a statement if it is false or to provide a proof if the statement is true. Items with the Theorem and Corollary designation are mathematical facts and the intention is for you to produce a valid proof of the given statement. The main difference between a Theorem and a Corollary is that corollaries are typically statements that follow quickly from a previous theorem. In general, you should expect corollaries to have very short proofs. However, that doesn't mean that you can't produce a more lengthy yet valid proof of a corollary.

It is important to point out that there are very few examples in the notes. This is intentional. One of the goals of the items labeled as Problem is for you to produce the examples.

Lastly, there are many situations where you will want to refer to an earlier definition, problem, theorem, or corollary. In this case, you should reference the statement by number. For example, you might write something like, "By Theorem 5.19, we see that...."

1.5 Some Minimal Guidance

Especially in the opening sections, it won't be clear what facts from your prior experience in mathematics we are "allowed" to use. Unfortunately, addressing this issue is difficult and is something we will sort out along the way. However, in general, here are some minimal guidelines to keep in mind.

First, there are times when we will need to do some basic algebraic manipulations. You should feel free to do this whenever the need arises. But you should show sufficient work along the way. You do not need to write down justifications for basic algebraic manipulations (e.g., adding 1 to both sides of an equation, adding and subtracting the same amount on the same side of an equation, adding like terms, factoring, basic simplification, etc.).

On the other hand, you do need to make explicit justification of the logical steps in a proof. When necessary, you should cite a previous definition, theorem, etc. by number.

Unlike the experience many of you had writing proofs in geometry, our proofs will be written in complete sentences. You should break sections of a proof into paragraphs and use proper grammar. There are some pedantic conventions for doing this that I will point out along the way. Initially, this will be an issue that most students will struggle with,
but after a few weeks everyone will get the hang of it.
Ideally, you should rewrite the statements of theorems before you start the proof. Moreover, for your sake and mine, you should label the statement with the appropriate number. I will expect you to indicate where the proof begins by writing "Proof." at the beginning. Also, we will conclude our proofs with the standard "proof box" (i.e., \square or \square), which is typically right-justified.

Lastly, every time you write a proof, you need to make sure that you are making your assumptions crystal clear. Sometimes there will be some implicit assumptions that we can omit, but at least in the beginning, you should get in the habit of stating your assumptions up front. Typically, these statements will start off "Assume..." or "Let...".

This should get you started. We will discuss more as the semester progresses. Now, go have fun and kick some butt!

Chapter 2

An Introduction to Groups

One of the major topics of this course is groups. The area of mathematics that is concerned with groups is called group theory. Loosely speaking, group theory is the study of symmetry, and in my opinion is one of the most beautiful areas in all of mathematics. It arises in puzzles, visual arts, music, nature, the physical and life sciences, computer science, cryptography, and of course, throughout mathematics.

2.1 A First Example

Let's begin our study by developing some intuition about what groups actually are. To get started, we will explore the game Spinpossible ${ }^{\mathrm{TM}}$, which used to be available for iOS and Android devices*. The game is played on a 3×3 board of scrambled tiles numbered 1 to 9 , each of which may be right-side-up or up-side-down. The objective of the game is to return the board to the standard configuration where tiles are arranged in numerical order and right-side-up. This is accomplished by a sequence of "spins", where a spin consists of rotating an $m \times n$ subrectangle by 180°. The goal is to minimize the number of spins used. The following figure depicts a scrambled board on the left and the solved board on the right. The sequence of arrows is used to denote some sequence of spins that transforms the scrambled board into the solved board.

Let's play with an example. Suppose we start with the following scrambled board.

[^0]| $\overline{\bar{z}}$ | $\overline{6}$ | $\overline{\mathrm{I}}$ |
| :---: | :---: | :---: |
| $\underline{4}$ | $\overline{9}$ | $\underline{5}$ |
| $\underline{7}$ | $\bar{\varepsilon}$ | $\underline{8}$ |

The underlines on the numbers are meant to help us tell whether a tile is right-side-up or up-side-down. Our goal is to use a sequence of spins to unscramble the board. Before we get started, let's agree on some conventions. When we refer to tile n, we mean the actual tile that is labeled by the number n regardless of its position and orientation on the board. On the other hand, position n will refer to the position on the board that tile n is supposed to be in when the board has been unscrambled. For example, in the board above, tile 1 is in position 3 and tile 7 happens to be in position 7 .

It turns out that there are multiple ways to unscramble this board, but I have one particular sequence in mind. First, let's spin the rectangle determined by the two rightmost columns. Here's what we get. I've shaded the subrectangle that we are spinning.

$\bar{\imath}$	$\overline{6}$	$\overline{\mathrm{~L}}$				
$\underline{4}$	$\overline{9}$	$\underline{5}$				
$\underline{7}$	$\bar{\varepsilon}$	$\underline{8}$	\rightarrow	$\bar{\imath}$	$\overline{8}$	$\underline{3}$
:---:	:---:	:---:				
$\underline{4}$	$\overline{\mathrm{G}}$	$\underline{6}$				
$\underline{7}$	$\underline{1}$	$\underline{9}$				

Okay, now let's spin the middle column.

$\bar{\imath}$	$\overline{8}$	$\underline{3}$				
$\underline{4}$	$\overline{\mathrm{c}}$	$\underline{6}$				
$\underline{7}$	$\underline{1}$	$\underline{9}$	\rightarrow	$\overline{\mathrm{\imath}}$	$\overline{\mathrm{~L}}$	$\underline{3}$
:---:	:---:	:---:				
$\underline{4}$	$\underline{5}$	$\underline{6}$				
$\underline{7}$	$\underline{8}$	$\underline{9}$				

Hopefully, you can see that we are really close to unscrambling the board. All we need to do is spin the rectangle determined by the tiles in positions 1 and 2.

$\overline{\mathrm{z}}$	$\overline{\mathrm{L}}$	$\underline{3}$				
$\underline{4}$	$\underline{5}$	$\underline{6}$				
$\underline{7}$	$\underline{8}$	$\underline{9}$	\rightarrow	$\underline{1}$	$\underline{2}$	$\underline{3}$
:---	:---	:---				
$\underline{4}$	$\underline{5}$	$\underline{6}$				
$\underline{7}$	$\underline{8}$	$\underline{9}$				

Putting all of our moves together, here is what we have.

$\bar{\imath}$	$\overline{6}$	$\overline{\mathrm{~L}}$				
$\underline{4}$	$\overline{9}$	$\underline{5}$				
$\underline{7}$	$\bar{\varepsilon}$	$\underline{8}$	\rightarrow	$\bar{\imath}$	$\overline{8}$	$\underline{3}$
:---:	:---:	:---:				
$\underline{4}$	$\overline{\mathrm{c}}$	$\underline{6}$				
$\underline{7}$	$\underline{1}$	$\underline{9}$	\rightarrow	$\overline{\mathrm{z}}$	$\overline{\mathrm{L}}$	$\underline{3}$
:---:	:---:	:---:				
$\underline{4}$	$\underline{5}$	$\underline{6}$				
$\underline{7}$	$\underline{8}$	$\underline{9}$	\rightarrow	$\underline{1}$	$\underline{2}$	$\underline{3}$
:---	:---	:---				
$\underline{4}$	$\underline{5}$	$\underline{6}$				
$\underline{7}$	$\underline{8}$	$\underline{9}$				

In this case, we were able to solve the scrambled board in 3 moves. It's not immediately obvious, but it turns out that there is no way to unscramble the board in fewer than 3 spins. However, there is at least one other solution that involves exactly 3 spins.

Problem 2.1. How many scrambled 3×3 Spinpossible boards are there? To answer this question, you will need to rely on some counting principles such as factorials. In this context, we want to include the solved board as one of the scrambled boards-it's just not very scrambled.

Problem 2.2. How many spins are there?
It's useful to have some notation. Let $s_{i j}$ (with $i \leq j$) denote the spin that rotates the subrectangle that has position i in the upper-left corner and position j in the lower-right corner. As an example, the sequence of spins that we used above to unscramble our initial scrambled board is

$$
s_{29} \rightarrow s_{28} \rightarrow s_{12}
$$

As you noticed in Problem 2.2, we can also rotate a single tile. Every spin of the form $s_{i i}$ is called a toggle. For example, s_{44} toggles the tile in position 4.

We can think of each spin as a function and since we are doing spins on top of spins, every sequence of spins corresponds to a composition of functions. We will follow the standard convention of function composition that says the function on the right goes first. In this case, our previous sequence of spins becomes $s_{12} \circ s_{28} \circ s_{29}$, which we abbreviate as $s_{12} s_{28} s_{29}$. This might take some getting used to, but just remember that it is just like function notation-stuff on the right goes first. We will refer to expressions like $s_{12} s_{28} s_{29}$ as words in the alphabet $\left\{s_{i j} \mid i \leq j\right\}$. Our words will always consist of a finite number of spins.

Every word consisting of spins corresponds to a function that takes a scrambled board as input and returns a scrambled board. We say that the words "act on" the scrambled boards. For each word, there is an associated net action. For example, the word $s_{12} s_{23} s_{12}$ corresponds to swapping the positions but not orientation of the tiles in positions 1 and 3. You should take the time to verify this for yourself. Sometimes it is difficult to describe what the net action associated to a word is, but there is always some corresponding net action nonetheless.

It is worth pointing out that $s_{12} s_{23} s_{12}$ is not itself a spin. However, sometimes a composition of spins will yield a spin. For example, the net action of $s_{12} s_{11} s_{12}$ is toggling the tile in position 2. That is, $s_{12} s_{11} s_{12}$ and s_{22} are two different words that correspond to the same net action. In this case, we write $s_{12} s_{11} s_{12}=s_{22}$, where the equality is referring to the net action as opposed to the words themselves. The previous example illustrates that multiple words may represent the same net action.

Problem 2.3. Find a sequence of 3 spins that is different from the one we described earlier that unscrambles the following board. Write your answer as a word consisting of spins.

\bar{z}	$\overline{6}$	$\overline{\mathrm{~L}}$
$\underline{4}$	$\overline{9}$	$\underline{5}$
$\underline{7}$	$\bar{\varepsilon}$	$\underline{8}$

Problem 2.4. What is the net action that corresponds to the word $s_{23} s_{12} s_{23}$? What can you conclude about $s_{23} s_{12} s_{23}$ compared to $s_{12} s_{23} s_{12}$?

We can also use exponents to abbreviate. For example, s_{23}^{2} is the same as $s_{23} s_{23}$ (which in this case is the net action of doing nothing) and $\left(s_{12} s_{23}\right)^{2}$ is the same as $s_{12} s_{23} s_{12} s_{23}$.
Problem 2.5. It turns out that there is an even simpler word (i.e., a shorter word) that yields the same net action as $\left(s_{12} s_{23}\right)^{2}$. Can you find one?

Define Spin $_{3 \times 3}$ to be the collection of net actions that we can obtain from words consisting of spins. We say that the set of spins generates $\operatorname{Spin}_{3 \times 3}$ and we refer to the set of spins as a generating set for $\operatorname{Spin}_{3 \times 3}$.
Problem 2.6. Suppose $s_{x_{1}} s_{x_{2}} \cdots s_{x_{n}}$ and $s_{y_{1}} s_{y_{2}} \cdots s_{y_{m}}$ are both words consisting of spins. Then the corresponding net actions, say u and v, respectively, are elements of $\operatorname{Spin}_{3 \times 3}$. Prove that the composition of the actions u and v is an element of $\operatorname{Spin}_{3 \times 3}$.

The previous problem tells us that the composition of two net actions from $\operatorname{Spin}_{3 \times 3}$ results in another net action in $\operatorname{Spin}_{3 \times 3}$. Formally, we say that $\operatorname{Spin}_{3 \times 3}$ is closed under composition.

It is clear that we can construct an infinite number of words consisting of spins, but since there are a finite number of ways to rearrange the positions and orientations of the tiles of the 3×3 board, there are only a finite number of net actions arising from these words. That is, $\operatorname{Spin}_{3 \times 3}$ is a finite set of functions.
Problem 2.7. Verify that $\operatorname{Spin}_{3 \times 3}$ contains an identity function, i.e., a function whose net action is "do nothing." What happens if we compose a net action from $\operatorname{Spin}_{3 \times 3}$ with the identity?

A natural question to ask is whether every possible scrambled Spinpossible board can be unscrambled using only spins. In other words, is $\operatorname{Spin}_{3 \times 3}$ sufficient to unscramble every scrambled board? It turns out that the answer is yes.
Problem 2.8. Verify that $\operatorname{Spin}_{3 \times 3}$ is sufficient to unscramble every scrambled board by describing an algorithm that will always unscramble a scrambled board. It does not matter whether your algorithm is efficient. That is, we don't care how many steps it takes to unscramble the board as long as it works in a finite number of steps. Using your algorithm, what is the maximum number of spins required to unscramble any scrambled board?

In a 2011 paper, Alex Sutherland and Andrew Sutherland (a father and son team) present a number of interesting results about Spinpossible and list a few open problems. You can find the paper at http://arxiv.org/abs/1110.6645. As a side note, Alex is one of the developers of the game and his father, Andrew, is a mathematics professor at MIT. Using a brute-force computer algorithm, the Sutherlands verified that every scrambled 3×3 Spinpossible board can be solved in at most 9 moves. However, a human readable mathematical proof of this fact remains elusive. By the way, mathematics is chock full of open problems and you can often get to the frontier of what is currently known without too much trouble. Mathematicians are in the business of solving open problems.

Instead of unscrambling boards, we can act on the solved board with an action from $\operatorname{Spin}_{3 \times 3}$ to obtain a scrambled board. Problem 2.8 tells us that we can use $\operatorname{Spin}_{3 \times 3}$ to get from the solved board to any scrambled board. In fact, starting with the solved board makes it clear that there is a one-to-one correspondence between net actions and scrambled boards.

Problem 2.9. What is the size of $\operatorname{Spin}_{3 \times 3}$? That is, how many net actions are in $\operatorname{Spin}_{3 \times 3}$?
Let's make a couple more observations. First, every spin is reversible. That is, every spin has an inverse. In the case of Spinpossible, we can just apply the same spin again to undo it. For example, s_{12}^{2} is the same as doing nothing. This means that the inverse of s_{12}, denoted s_{12}^{-1}, is s_{12} itself. Symbolically, we write $s_{12}^{-1}=s_{12}$. Remember that we are exploring the game Spinpossible-it won't always be the case that repeating an action will reverse the action.

In the same vein, every sequence of spins is reversible. For example, if we apply $s_{12} s_{23}$ (i.e., do s_{23} first followed by s_{12}), we could undo the net action by applying $s_{23} s_{12}$ because

$$
\left(s_{12} s_{23}\right)^{-1}=s_{23}^{-1} s_{12}^{-1}=s_{23} s_{12}
$$

since $s_{23}^{-1}=s_{23}$ and $s_{12}^{-1}=s_{12}$. Notice that the first equality is an instantiation of the "socks and shoes theorem", which states that if f and g are functions with compatible domain and codomain, then

$$
(f \circ g)^{-1}=g^{-1} \circ f^{-1}
$$

The upshot is that the net action that corresponds to a word consisting of spins can be reversed by applying "socks and shoes" and is itself an action.

Problem 2.10. Imagine we started with the solved board and then you scrambled the board according to some word consisting of spins. Let's call this word w. How could you obtain the solved board from the scrambled board determined by w ? How is this related to w^{-1} ?

There is one detail we have been sweeping under the rug. Notice that every time we wrote down a word consisting of two or more spins, we didn't bother to group pairs of adjacent spins using parentheses. Recall that the composition of functions with compatible domains and codomains is associative (see Theorem 2.29). That is, if f, g, and h are functions with compatible domains and codomains, then

$$
(f \circ g) \circ h=f \circ(g \circ h) .
$$

Since composition of spins is really just function composition, composition of spins is also associative. And since the spins generate $\operatorname{Spin}_{3 \times 3}$, the composition of net actions from $\operatorname{Spin}_{3 \times 3}$ is associative, as well.

Problem 2.11. Does the order in which you apply spins matter? Does it always matter? Let's be as specific as possible. If the order in which we apply two spins does not matter, then we say that the spins commute. However, if the order does matter, then the spins do not commute. When will two spins commute? When will they not commute? Provide some specific examples.

In the previous problem, you discovered that the composition of two spins may or may not commute. Since the spins generate $\operatorname{Spin}_{3 \times 3}$, the composition of two net actions may or may not commute. We say that $\operatorname{Spin}_{3 \times 3}$ is not commutative.

Let's collect our key observations about $\operatorname{Spin}_{3 \times 3}$.
(1) Generating Set: The set of spins generates $\operatorname{Spin}_{3 \times 3}$. That is, every net action from Spin $_{3 \times 3}$ corresponds to a word consisting of spins. ${ }^{+}$
(2) Closure: The composition of any two net actions from $\operatorname{Spin}_{3 \times 3}$ results in a net action from Spin $_{3 \times 3}$.
(3) Associative: The composition of net actions from $\operatorname{Spin}_{3 \times 3}$ is associative.
(4) Identity: There is an identity in $\operatorname{Spin}_{3 \times 3}$ whose corresponding net action is "do nothing".
(5) Inverses: Every net action from $\operatorname{Spin}_{3 \times 3}$ has an inverse net action in $\operatorname{Spin}_{3 \times 3}$. Composing a net action and its inverse results in the identity.
(6) The composition of two net actions from $\operatorname{Spin}_{3 \times 3}$ may or may not commute.

It turns out that $\operatorname{Spin}_{3 \times 3}$ is an example of a group. Loosely speaking, a group is a set together with a method for combining two elements together that satisfies conditions (2), (3), (4), and (5) above. More formally, a group is a nonempty set together with an associative binary operation such that the set contains an identity element and every element in the set has an inverse that is also in the set. As we shall see, groups can have a variety of generating sets, possibly of different sizes. Also, some groups are commutative and some groups are not.

Before closing out this section, let's tackle a few more interesting problems concerning Spinpossible. We say that a generating set S for a group is a minimal generating set if $S \backslash\{x\}$ is no longer a generating set for the group for all $x \in S$.

Problem 2.12. Determine whether the set of spins is a minimal generating set for $\operatorname{Spin}_{3 \times 3}$.
It's not too difficult to prove-but we will omit the details-that we can generate Spin $_{3 \times 3}$ with the following subset of 9 spins:

$$
T=\left\{s_{11}, s_{12}, s_{23}, s_{36}, s_{56}, s_{45}, s_{47}, s_{78}, s_{89}\right\} .
$$

That is, every net action in $\operatorname{Spin}_{3 \times 3}$ corresponds to a word consisting of the spins from T. Try to take a moment to convince yourself that this is at least plausible.

Problem 2.13. For each of the following spins, find a word consisting of spins from the set T that yields the same net action.
(a) s_{33}
(b) s_{13}
(c) s_{14}

Problem 2.14. Taking for granted that T is a generating set for $\operatorname{Spin}_{3 \times 3}$, determine whether T is a minimal generating set.
${ }^{\dagger}$ The case of Spinpossible is a little misleading. Since each spin is its own inverse, we never need to write words consisting of spins with inverses. However, as we shall see later, there are situations outside the context of Spinpossible where we will need to utilize inverses of elements from a generating set.

2.2 Binary Operations

Before beginning our formal study of groups, we need have an understanding of binary operations. After learning to count as a child, you likely learned how to add, subtract, multiply, and divide with real numbers. As long as we avoid division by zero, these operations are examples of binary operations since we are combining two objects to obtain a single object. More formally, we have the following definition.

Definition 2.15. A binary operation $*$ on a set A is a function from $A \times A$ into A. For each $(a, b) \in A \times A$, we denote the element $*(a, b)$ via $a * b$. If the context is clear, we may abbreviate $a * b$ as $a b$.

Don't misunderstand the use of $*$ in this context. We are not implying that $*$ is the ordinary multiplication of real numbers that you are familiar with. We use * to represent a generic binary operation.

Notice that since the codomain of a binary operation on a set A is A, binary operations require that we yield an element of A when combining two elements of A. In this case, we say that A is closed under *. Binary operations have this closure property by definition. Also, since binary operations are functions, any attempt to combine two elements from A should result in a unique element of A. Moreover, since the domain of $*$ is $A \times A$, it must be the case that $*$ is defined for all pairs of elements from A.

Example 2.16. Here are some examples of binary operations.
(a) The operations of + (addition), - (subtraction), and \cdot (multiplication) are binary operations on the real numbers. All three are also binary operations on the integers. However, while + and \cdot are both binary operations on the set of natural numbers, - is not a binary operation on the natural numbers since $1-2=-1$, which is not a natural number.
(b) The operation of \div (division) is not a binary operation on the set of real numbers because all elements of the form $(a, 0)$ are not in the domain $\mathbb{R} \times \mathbb{R}$ since we cannot divide by 0 . Yet, \div is a suitable binary operation on $\mathbb{R} \backslash\{0\}$.
(c) Let A be a nonempty set and let F be the set of functions from A to A. Then o (function composition) is a binary operation on F. We utilized this fact when exploring the game Spinpossible.
(d) Let $M_{2 \times 2}(\mathbb{R})$ be the set of 2×2 matrices with real number entries. Then matrix multiplication is a binary operation on $M_{2 \times 2}(\mathbb{R})$.

Problem 2.17. Let $M(\mathbb{R})$ be the set of matrices (of any size) with real number entries. Is matrix addition a binary operation on $M(\mathbb{R})$? How about matrix multiplication? What if you restrict to square matrices of a fixed size $n \times n$?

Problem 2.18. Let A be a set. Determine whether \cup (union) and \cap (intersection) are binary operations on $\mathcal{P}(A)$ (i.e., the power set of A).

Problem 2.19. Consider the closed interval [0,1] and define $*$ on [0,1] via $a * b=\min \{a, b\}$ (i.e., take the minimum of a and b). Determine whether $*$ is a binary operation on $[0,1]$.

Problem 2.20. Consider a square puzzle piece that fits perfectly into a square hole. Let R_{4} be the set of net actions consisting of the rotations of the square by an appropriate amount so that it fits back into the hole. Assume we can tell the corners of the square apart from each other so that if the square has been rotated and put back in the hole we can notice the difference. Each net action is called a symmetry of the square.
(a) Describe all of the distinct symmetries in R_{4}. How many distinct symmetries are in R_{4} ?
(b) Is composition of symmetries a binary operation on R_{4} ?

The set R_{4} is called the rotation group for the square. For $n \geq 3, R_{n}$ is the rotation group for the regular n-gon and consists of the rotational symmetries for a regular n-gon. As we shall see later, every R_{n} really is a group under composition of symmetries.

Problem 2.21. Consider a puzzle piece like the one in the previous problem, except this time, let's assume that the piece and the hole are an equilateral triangle. Let D_{3} be the full set of symmetries that allow the triangle to fit back in the hole. In addition to rotations, we will also allow the triangle to be flipped over-called a reflection.
(a) Describe all of the distinct symmetries in D_{3}. How many distinct symmetries are in D_{3} ?
(b) Is composition of symmetries a binary operation on D_{3} ?

Problem 2.22. Repeat the above problem, but do it for a square instead of a triangle. The corresponding set is called D_{4}.

The sets D_{3} and D_{4} are examples of dihedral groups. In general, for $n \geq 3, D_{n}$ consists of the symmetries (rotations and reflections) of a regular n-gon and is called the dihedral group of order $2 n$. In this case, the word "order" simply means the number of symmetries in the set. Do you see why D_{n} consists of $2 n$ actions? As expected, we will prove that every D_{n} really is a group.

Problem 2.23. Consider the set S_{3} consisting of the net actions that permute the positions of three coins (without flipping them over) that are sitting side by side in a line. Assume that you can tell the coins apart.
(a) Write down all distinct net actions in S_{3} using verbal descriptions. Some of these will be tricky to describe. How many distinct net actions are in S_{3} ?
(b) Is composition of net actions a binary operation on S_{3} ?

The set S_{3} is an example of a symmetric group. In general, S_{n} is the symmetric group on n objects and consists of the net actions that rearrange the n objects. Such rearrangements are called permutations. Later we will prove that each S_{n} is a group under composition of permutations.

Problem 2.24. Explain why composition of spins is not a binary operation on the set of spins in Spin $_{3 \times 3}$.

Some binary operations have additional properties.
Definition 2.25. Let A be a nonempty set and let $*$ be a binary operation on A.
(a) We say that $*$ is associative if and only if $(a * b) * c=a *(b * c)$ for all $a, b, c \in A$.
(b) We say that $*$ is commutative if and only if $a * b=b * a$ for all $a, b \in A$.

Problem 2.26. Provide an example of each of the following.
(a) A binary operation on a set that is commutative.
(b) A binary operation on a set that is not commutative.

Problem 2.27. Provide an example of a set A and a binary operation $*$ on A such that $(a * b)^{2} \neq a^{2} * b^{2}$ for some $a, b \in A$. Under what conditions will $(a * b)^{2}=a^{2} * b^{2}$ for all $a, b \in A$? Note: The notation x^{2} is shorthand for $x * x$.
Problem 2.28. Define the binary operation $*$ on \mathbb{R} via $a * b=1+a b$. In this case, $a b$ denotes the multiplication of the real numbers a and b. Determine whether $*$ is associative on \mathbb{R}.
Theorem 2.29. Let A be a nonempty set and let F be the set of functions from A to A. Then function composition is an associative binary operation on F.

When the set A is finite, we can represent a binary operation on A using a table in which the elements of the set are listed across the top and down the left side (in the same order). The entry in the i th row and j th column of the table represents the output of combining the element that labels the i th row with the element that labels the j th column (order matters).
Example 2.30. Consider the following table.

$*$	a	b	c
a	b	c	b
b	a	c	b
c	c	b	a

This table represents a binary operation on the set $A=\{a, b, c\}$. In this case, $a * b=c$ while $b * a=a$. This shows that $*$ is not commutative.
Problem 2.31. Consider the following table that displays the binary operation $*$ on the set $\{x, y, z\}$.

$*$	x	y	z
x	x	y	z
y	y	x	x
z	y	x	x

(a) Determine whether * is commutative.
(b) Determine whether $*$ is associative.

Problem 2.32. What property must the table for a binary operation have in order for the operation to be commutative?

2.3 Groups

Without further ado, here is our official definition of a group.
Definition 2.33. A group $(G, *)$ is a set G together with a binary operation $*$ such that the following axioms hold.
(0) The set G is closed under *.
(1) The operation $*$ is associative.
(2) There is an element $e \in G$ such that for all $g \in G, e * g=g * e=g$. We call e the identity.
(3) Corresponding to each $g \in G$, there is an element $g^{\prime} \in G$ such that $g * g^{\prime}=g^{\prime} * g=e$. In this case, g^{\prime} is said to be an inverse of g.

The order of G, denoted $|G|$, is the cardinality of the set G. If $|G|$ is finite, then we say that G has finite order. Otherwise, we say that G has infinite order.

In the definition of a group, the binary operation $*$ is not required to be commutative. If $*$ is commutative, then we say that G is abelian. Commutative groups are called abelian in honor of the Norwegian mathematician Niels Abel (1802-1829). A few additional comments are in order.

- Axiom 2 forces G to be nonempty.
- If $(G, *)$ is a group, then we say that G is a group under *.
- We refer to $a * b$ as the product of a and b even if $*$ is not actually multiplication.
- For simplicity, if $(G, *)$ is a group, we will often refer to G as being the group and suppress any mention of $*$ whatsoever. In particular, we will often abbreviate $a * b$ as $a b$.
- In Theorem 2.41, we shall see that each $g \in G$ has a unique inverse. From that point on, we will denote the inverse of g by g^{-1}.

Problem 2.34. Explain why Axiom 0 is unnecessary.
Problem 2.35. Verify that each of the following is a group under composition of actions and determine the order. Which of the groups are abelian?
(a) $\operatorname{Spin}_{3 \times 3}$
(b) R_{4} (see Problem 2.20)
(c) D_{3} (see Problem 2.21)
(d) D_{4} (see Problem 2.22)
(e) S_{3} (see Problem 2.23)

Problem 2.36. Determine whether each of the following is a group. If the pair is a group, determine the order, identify the identity, describe the inverses, and determine whether the group is abelian. If the pair is not a group, explain why.
(a) $(\mathbb{Z},+)$
(b) $(\mathbb{N},+)$
(c) (\mathbb{Z}, \cdot)
(d) $(\mathbb{R},+)$
(e) (\mathbb{R}, \cdot)
(f) $(\mathbb{R} \backslash\{0\}, \cdot)$
(g) $\left(M_{2 \times 2}(\mathbb{R}),+\right)$
(h) $\left(M_{2 \times 2}(\mathbb{R}), *\right)$, where $*$ is matrix multiplication.
(i) $(\{a, b, c\}, *)$, where $*$ is the operation determined by the table in Example 2.30.
(j) $(\{x, y, z\}, *)$, where $*$ is the operation determined by the table in Problem 2.31.

Notice that in Axiom 2 of Definition 2.33, we said the identity and not an identity. Implicitly, this implies that the identity is unique.

Theorem 2.37. If G is a group, then there is a unique identity element in G. That is, there is only one element $e \in G$ such that $g e=e g=g$ for all $g \in G$.

Problem 2.38. Provide an example of a group of order 1. Can you find more than one such group?

Any group of order 1 is called a trivial group. It follows immediately from the definition of a group that the element of a trivial group must be the identity.

The following theorem is crucial for proving many theorems about groups.
Theorem 2.39 (Cancellation Law). Let G be a group and let $g, x, y \in G$. Then $g x=g y$ if and only if $x=y$. Similarly, $x g=y g$ if and only if $x=y . \ddagger$

Problem 2.40. Show that (\mathbb{R}, \cdot) fails the Cancellation Law confirming the fact that it is not a group.

Recall that Axiom (3) of Definition 2.33 states that each element of a group has at least one inverse. The next theorem tells us that each element has exactly one inverse.

Theorem 2.41. If G is a group, then each $g \in G$ has a unique inverse.
\ddagger You only need to prove one of these statements as the proof of the other is similar.

In light of the previous theorem, the unique inverse of g in a group G will be denoted as g^{-1}.
Theorem 2.42. If G is a group, then for all $g, h \in G$, the equations $g x=h$ and $y g=h$ have unique solutions for x and y in G.

While proving the previous few theorems, hopefully one of the things you realized is that you can multiply both sides of a group equation by the same element but that you have to do it on the same side of each half. That is, since a group may or may not be abelian, if we multiply one side of an equation on the left by a group element, then we must multiply the other side of the equation on the left by the same group element.

Despite the fact that a group may or may not be abelian, the next result tells us that if one product is equal to the identity, then reversing the order yields the same result.
Theorem 2.43. If G is a group and $g, h \in G$ such that $g h=e$, then $h g=e$.
The upshot of the previous theorem is if we have a "left inverse" then we automatically have a "right inverse" (and vice versa). The next theorem should not be surprising.
Theorem 2.44. If G is a group, then $\left(g^{-1}\right)^{-1}=g$ for all $g \in G$.
The next theorem is analogous to the "socks and shoes theorem" for composition of functions.
Theorem 2.45. If G is a group, then $(g h)^{-1}=h^{-1} g^{-1}$ for all $g, h \in G$.
Definition 2.46. If G is a group and $g \in G$, then for all $n \in \mathbb{N}$, we define:
(a) $g^{n}=g g \cdots g$
n factors
(b) $g^{-n}=\underbrace{g^{-1} g^{-1} \cdots g^{-1}}_{n \text { factors }}$
(c) $g^{0}=e$

Remark 2.47. If G is a group under + , then we can reinterpret Definition 2.46 as:
(a) $n g=\underbrace{g+g+\cdots+g}_{n \text { summands }}$
(b) $-n g=\underbrace{-g+-g+\cdots+-g}_{n \text { summands }}$
(c) $0 g=0$

The good news is that the rules of exponents you are familiar with still hold for groups.
Theorem 2.48. If G is a group and $g \in G$, then for all $n, m \in \mathbb{Z}$, we have the following:
(a) $g^{n} g^{m}=g^{n+m}$,
(b) $\left(g^{n}\right)^{-1}=g^{-n}$.

Problem 2.49. Reinterpret Theorem 2.48 if G is a group under addition.

2.4 Generating Sets

In this section, we explore the concept of a generating set for a group.
Definition 2.50. Let G be a group and let S be a subset of G. A finite product (under the operation of G) consisting of elements from S or their inverses is called a word in S. That is, a word in S is of the form

$$
s_{x_{1}} s_{x_{2}} \cdots s_{x_{n}}
$$

where each $s_{x_{i}}$ is either an element from S or the inverse of an element from S. Each $s_{x_{i}}$ is called a letter and the set S is called the alphabet. By convention, the identity of G can be represented by the empty word, which is the word having no letters. The set of elements of G that can be written as words in S is denoted by $\langle S\rangle$ and is called the group generated by S.

For example, if a, b, and c are elements of a group G, then $a b, c^{-1} a c c$, and $a b^{-1} c a a^{-1} b c^{-1}$ are words in the set $\{a, b, c\}$. It is important to point out that two different words may be equal to the same element in G. We saw this happen when we studied Spinpossible in Section 2.1. For example, see Problems 2.3-2.5.

Theorem 2.51. If G is a group under $*$ and S is a subset of G, then $\langle S\rangle$ is also a group under $*$.

Definition 2.52. If G is a group and S is a subset of G such that $G=\langle S\rangle$, then S is called a generating set of G. In other words, S is a generating set of G if every element of G can be expressed as a word in S. In this case, we say S generates G. A generating set S for G is a minimal generating set if $S \backslash\{x\}$ is no longer a generating set for G for all $x \in S$.

A generating set for a group is analogous to a spanning set for a vector space and a minimal generating set for a group is analogous to a basis for a vector space.

If we know what the elements of S actually are, then we will list them inside the angle brackets without the set braces. For example, if $S=\{a, b, c\}$, then we will write $\langle a, b, c\rangle$ instead of $\langle\{a, b, c\}\rangle$. In the special case when the generating set S consists of a single element, say g, we have

$$
G=\langle g\rangle=\left\{g^{k} \mid k \in \mathbb{Z}\right\}
$$

and say that G is a cyclic group. As we shall see, $\langle g\rangle$ may be finite or infinite.
Example 2.53. In Section 2.1, we discovered that the set of spins is a non-minimal generating set for $\operatorname{Spin}_{3 \times 3}$ while the set $T=\left\{s_{11}, s_{12}, s_{23}, s_{36}, s_{56}, s_{45}, s_{47}, s_{78}, s_{89}\right\}$ is a minimal generating set.

Problem 2.54. Consider the rotation group R_{4} that we introduced in Problem 2.20. Let r be the element of R_{4} that rotates the square by 90° clockwise.
(a) Describe the action of r^{-1} on the square and express r^{-1} as a word using r only.
(b) Prove that $R_{4}=\langle r\rangle$ by writing every element of R_{4} as a word using r only.
(c) Is $\{r\}$ a minimal generating set for R_{4} ?
(d) Is R_{4} a cyclic group?

Problem 2.55. Consider the dihedral group D_{3} introduced in Problem 2.21. To give us a common starting point, let's assume the triangle and hole are positioned so that one of the tips of the triangle is pointed up. Let r be rotation by 120° in the clockwise direction and let s be the reflection in D_{3} that fixes the top of the triangle.
(a) Describe the action of r^{-1} on the triangle and express r^{-1} as a word using r only.
(b) Describe the action of s^{-1} on the triangle and express s^{-1} as a word using s only.
(c) Prove that $D_{3}=\langle r, s\rangle$ by writing every element of D_{3} as a word in r or s.
(d) Is $\{r, s\}$ a minimal generating set for D_{3} ?
(e) Explain why there is no single generating set for D_{3} consisting of a single element. This proves that D_{3} is not cyclic.

It is important to point out that the fact that $\{r, s\}$ is a minimal generating set for D_{3} does not imply that D_{3} is not a cyclic group. There are examples of cyclic groups that have minimal generating sets consisting of more than one element (see Problem 2.70).

Problem 2.56. Let's consider the group D_{3} again. Let s be the same reflection as in Problem 2.55 and let s^{\prime} be the reflection in D_{3} that fixes the bottom right corner of the triangle.
(a) Express r as a word in s and s^{\prime}.
(b) Use part (a) together with Problem 2.55 to prove that $\left\langle s, s^{\prime}\right\rangle=D_{3}$.

Problem 2.57. Consider the dihedral group D_{4} introduced in Problem 2.22. Let r be clockwise rotation by 90° and let s be the reflection over the vertical midline of the square.
(a) Describe the action of r^{-1} on the square and express r^{-1} as a word using r only.
(b) Describe the action of s^{-1} on the square and express s^{-1} as a word using s only.
(c) Prove that $\{r, s\}$ is generating set for D_{4}.
(d) Is $\{r, s\}$ a minimal generating set for D_{4} ?
(e) Find a different generating set for D_{4}.
(f) Is D_{4} a cyclic group?

Problem 2.58. Consider the symmetric group S_{3} that was introduced in Problem 2.23. Let s_{1} be the action that swaps the positions of the first and second coins and let s_{2} be the action that swaps the positions of the second and third coins. Prove that $S_{3}=\left\langle s_{1}, s_{2}\right\rangle$.

Problem 2.59. Find a minimal generating set for $(\mathbb{Z},+)$. Is \mathbb{Z} a cyclic group under addition?

2.5 Group Tables

Recall that we could represent a binary operation on a finite set using a table. Since groups have binary operations at their core, we can represent a finite group (i.e., a group with finitely many elements) using a table, called a group table. For example, the group table for D_{3} is given below, where we have used $\{r, s\}$ as the generating set (see Problem 2.55).

$*$	e	r	r^{2}	s	$s r$	$s r^{2}$
e	e	r	r^{2}	s	$s r$	$s r^{2}$
r	r	r^{2}	e	$s r^{2}$	s	$s r$
r^{2}	r^{2}	e	r	$s r$	$s r^{2}$	s
s	s	$s r$	$s r^{2}$	e	r	r^{2}
$s r$	$s r$	$s r^{2}$	s	r^{2}	e	r
$s r^{2}$	$s r^{2}$	s	$s r$	r	r^{2}	e

As a reminder, our convention is that if x appears in row i and y appears in column j, then row i "times" column j will result in the element determined by $x y$, where as usual we follow our right to left convention. That is, $x y$ means we apply y first and then x (as in function composition).

Given an arbitrary group G, we should probably say, "a group table for G " and not "the group table for G." The reason for this is that if we chose a different order of the elements (e.g., swap rows 1 and 4 -which swaps columns 1 and 4 , as well), then the table would look slightly different. Also, if we had chosen a different generating set, then the names of the elements would look different. Regardless, the table still captures the same information about the binary operation. Because every possible table for a given group conveys the same information about the architecture of the group, people may refer to any table for the group as "the" table. Regardless of the ordering of the other elements in the group, it is standard practice to list the identity first. That is, we will always put e in the top row and the leftmost column.

Problem 2.60. For each of the following groups, identify a generating set and then create the group table.
(a) R_{4}
(b) D_{4}
(c) S_{3}

Problem 2.61. Given the table for a group, how can you identify which elements are inverses of each other? Does this tell you anything about which element must appear in every row and column of the group table?

Let's introduce a couple of new groups.
Problem 2.62. Consider the symmetric group S_{2} that consists of the net actions that permute the positions of two coins (without flipping them over) that are sitting side by side in a line. Let s be the action that swaps the positions of the two coins.
(a) Verify that $S_{2}=\langle s\rangle$. What is the order of S_{2} ?
(b) Create the group table for S_{2}.
(c) Is S_{2} abelian?

Problem 2.63. Consider a rectangle (which may or may not be a square) oriented so that one side is parallel to the ground. Let h be the symmetry that reflects the rectangle over the horizontal midline and let v be the symmetry that reflects the rectangle over the vertical midline. Define $V_{4}:=\langle v, h\rangle$. This group is called the Klein group (or Vierergruppe, which is German for "four-group") after the German mathematician Felix Klein (18491925).
(a) Verify that $\left|V_{4}\right|=4$ by describing the symmetries in the group.
(b) Create the group table for V_{4}.
(c) Is V_{4} abelian?
(d) Is V_{4} cyclic?

Perhaps you noticed when creating the tables above that each element of the group appeared exactly once in each row and column, respectively. This is true in general for groups.

Theorem 2.64. If ($G, *$) is a finite group, then each element of G appears exactly once in each row and each column, respectively, in any group table for G.

We can also use tables to define groups. For example, consider the following table on the set $A=\{e, a, b, c\}$.

$*$	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

Is this a table for a group? First, we see that the binary operation determined by the table is closed. Second, we see that e is acting as the identity. Since every row and column has the identity element e appearing, we know that every element has an inverse (do you see why that follows?). The only thing left to check is associativity. Imagine for a moment what this entails. It's messy right?! And this is only for a group of order 4.

Thankfully, we can rely on some prior knowledge to help out with associativity. It turns out that if you look closely, the group table for V_{4} looks the "same" as the table above. What do we mean by "same" here? The names for elements are different (except for e), but
the product of corresponding elements yields the corresponding result.

To see what I mean, let's color both tables with white, red, blue, and green in such a way that each element corresponds to a unique color. If we choose our colors wisely, it is easy to see that both tables have the same structure.

Since we already know that V_{4} is a group, we know that the binary operation for V_{4} is associative. This discussion verifies that $(A, *)$ is a group.

It is important to point out that if we had not chosen our colors wisely, then perhaps the colorings of the two tables would not agree. Moreover, if we had made the same color choices for elements, but then rearranged columns and rows of one table, the colorings of the two tables would not agree. This doesn't imply anything. The point is whether we can get the tables to match.

Problem 2.65. Is it possible to color the group table for R_{4} so that it matches the coloring of V_{4} ? Explain your answer.

2.6 Cayley Diagrams

In this section, we will introduce visual way of encoding the abstract structure of the group in terms of a specified generating set. To get started, let's tinker with an example.

Recall that in Problem 2.1, we discovered that there are a total of $2^{9} \cdot 9!=185,794,560$ possible scrambled 3×3 Spinpossible boards. Now, imagine we wanted to write a solution manual that would describe how to solve all these boards. There are many possible ways to construct such a solution manual, but here is one way.

The manual will consist of $185,794,560$ pages such that each page lists a unique scrambling of the 3×3 board. Don't forget that one of these scramblings is the solved board, which we will make page 1. Also, imagine that the book is arranged in such a way that it isn't too difficult to look up a given scrambled board. On each page below the scrambled board is a table that lists all possible spins. Next to each spin, the table indicates whether doing that particular spin will result in a board that is either closer to being solved or farther away from being solved. In addition, the page number that corresponds to the resulting board is listed next to each spin.

In most cases, there will be many spins that take us closer to the solved board. Given a scrambled board, a solution would consist of following one possible sequence of pages through the book that takes us from the scrambled board to the solved board. There could be many such sequences. If we could construct such a solution manual, we would have an atlas or map for the game Spinpossible.

Note that even if we make a wrong turn (i.e., follow a page that takes us farther away from the solution), we can still get back on track by following page numbers that take us closer to the solved board. In fact, we can always flip back to the page we were on before
taking a wrong turn. This page will be listed on our "wrong turn page" since doing the same spin twice has the net effect of doing nothing. If you were to actually do this, the number of pages we would need to visit would be longer than an optimal solution, but we'd get to the solved board nonetheless.

Let's get a little more concrete. Consider the game Spinpossible, except let's simplify it a little. Instead of playing on the 3×3 board, let's play on a 1×2 board consisting of a single row with tiles labeled 1 and 2 . The rules of the game are what you would expect; we are restricted to spins involving just the tiles in positions 1 and 2 of the original board. A scrambling of the 1×2 Spinpossible board consists of any rearrangement of the tiles 1 and 2 , where either of the tiles can be right-side-up or up-side-down.

Problem 2.66. Let $\operatorname{Spin}_{1 \times 2}$ denote the group of net actions that corresponds to compositions of allowable spins on the 1×2 Spinpossible board.
(a) How many scrambled boards are there for the 1×2 Spinpossible game? Write them all down. Don't forget to include the solved board.
(b) What is the order of $\operatorname{Spin}_{1 \times 2}$?
(c) Verify that $\operatorname{Spin}_{1 \times 2}=\left\langle s_{11}, s_{22}, s_{12}\right\rangle$ by writing every element as a word in s_{11}, s_{22}, or s_{12}.
(d) Is $\left\{s_{11}, s_{22}, s_{12}\right\}$ a minimal generating set for $\operatorname{Spin}_{1 \times 2}$?

Let's try to make a map for $\operatorname{Spin}_{1 \times 2}$, but instead of writing a solution manual, we will draw a diagram of the group. The first thing we'll do is draw each of the scramblings that we found in the previous problem. It doesn't matter how we arrange all of these drawings, as long as there is some space between them. Now, for each of our 8 scrambled boards, figure out what happens when we do each of our 3 allowable spins. For each of these spins, we'll draw an arrow from the scrambled board under consideration to the resulting board. Don't worry about whether doing each of these spins is a good idea or not. In this case, each of our scrambled boards will have 3 arrows heading out towards 3 distinct boards. Do you see why?

In order for us to keep straight what each arrow represents, let's color our arrows, so that doing a particular type of spin is always the same color. For example, we could color the arrows that toggle the tile in the first position as green. Recall that doing the same spin twice has the net effect of doing nothing, so let's just make all of our arrows point in both directions.

To make sure you are following along, consider the following scrambled board.

\section*{| $\overline{\mathrm{I}}$ | $\overline{\mathrm{z}}$ |
| :--- | :--- |}

This board is one of our 8 possible scrambled 1×2 boards. We have three possible spins we can do to this board: toggle position 1, toggle position 2 , or spin the whole board. Each of these spins has a corresponding two-way arrow that takes us to three different scrambled boards. Figure 2.1 provides a visual representation of what we just discussed.

Figure 2.1

Note that I could have drawn the four scrambled boards in Figure 2.1 anywhere I wanted to, but I have a particular layout in mind. Also, notice we have three different colored arrows. In this case, a green arrow corresponds to toggling the tile in position $1\left(s_{11}\right)$, a blue arrow corresponds to toggling position $2\left(s_{22}\right)$, and a red arrow corresponds to spinning the whole board $\left(s_{12}\right)$.

If we include the rest of the scrambled boards and all possible spins, we obtain Figure 2.2. Note that I've chosen a nice layout for the figure, but it's really the connections between the various boards that are important.

Figure 2.2
Ultimately, we want a diagram that conveys information about the structure of the group, so instead of labeling the vertices of the diagram for $\operatorname{Spin}_{1 \times 2}$ in Figure 2.2 with scrambled boards, we will label the vertices with the elements of the group in a way that
respects the configuration of arrows. But in order to do this, we need to make a choice about how to start labeling. A natural choice to make is to label the solved board with the identity e. Then each scrambled board should be labeled by the group element that corresponds to the net action that takes us from the solved board to that scrambled board.

One way to do this is to label each vertex with the word that corresponds to a path of arrows that leads to the vertex from the vertex labeled by the identity e. Don't forget that we apply our composition of actions from right to left. This means that following a sequence of arrows out of the vertex labeled by e will get recorded as a word written right to left. That is, the first arrow out of e corresponds to the rightmost letter in the word.

For example, consider the following scrambled board.

\section*{| $\underline{2}$ | $\overline{\mathrm{~L}}$ |
| :--- | :--- |}

Looking at Figure 2.2, we see that one way to get to this board from the solved board is to follow a blue arrow and then a red arrow. This corresponds to the word $s_{12} s_{22}$. However, it also corresponds to the word $s_{22} s_{12} s_{22} s_{11}$ even though this is not an optimal solution. So, we can label the board in question with either $s_{11} s_{22}$ or $s_{22} s_{12} s_{22} s_{11}$ and there are other choices, as well.

Problem 2.67. Using Figure 2.2, find three distinct words in s_{11}, s_{22}, or s_{12} that correspond to the following scrambled board.

$$
\begin{array}{|l|l|}
\hline \overline{\mathrm{I}} & \overline{\mathrm{z}} \\
\hline
\end{array}
$$

If we continue labeling the vertices of the directed graph in Figure 2.2, then one possible labeling is given in Figure 2.3. Each word tells you how to reach the corresponding scrambled board from the solved board. The directed graph in Figure 2.3 is called the Cayley diagram for $\operatorname{Spin}_{1 \times 2}$ using $\left\{s_{11}, s_{22}, s_{12}\right\}$ as a generating set. It is important to point out that it will not always be the case that the arrows are two-way arrows. This happened to be the case here because each of our generators is its own inverse.

Problem 2.68. Consider the Cayley diagram for Spin $_{1 \times 2}$ in Figure 2.3.
(a) Removing all the red arrows corresponds to forbidding the spin that rotates the full 1×2 board. Can we obtain all of the scrambled boards from the solved board using only blue and green arrows? What does this tell you about $\left\{s_{11}, s_{22}\right\}$?
(b) What if we remove the blue arrows? What does this tell you about $\left\{s_{11}, s_{12}\right\}$?
(c) What if we remove the green arrows? What does this tell you about $\left\{s_{22}, s_{12}\right\}$?

Definition 2.69. Suppose G is a group and S is a generating set of G. The Cayley diagram for G with generating set S is a colored directed graph constructed as follows:
(a) The vertices correspond to elements of G.
(b) Each generator $s \in S$ is assigned a color, say c_{s}.

Figure 2.3. Cayley diagram for $\operatorname{Spin}_{1 \times 2}$ with generating set $\left\{s_{11}, s_{22}, s_{12}\right\}$.
(c) For $g \in G$ and $s \in S$, there is a directed edge from g to $s g$ with color c_{s}.

Note that following the arrow from g to $s g$ with color c_{s} corresponds to applying the action of s to g. Moreover, following the arrow backwards from $s g$ to g corresponds to applying s^{-1} to $s g$. If a generator is its own inverse (like the spins in $\operatorname{Spin}_{1 \times 2}$), then the arrows corresponding to that generator are two-way arrows.

Cayley diagrams are named after their inventor Arthur Cayley, a nineteenth century British mathematician. We'll see his name pop up a couple more times in the course.

Before asking you to construct some Cayley diagrams, let's play with another example. In the next problem you will encounter a Cayley diagram where all the edges are one-way arrows.

Problem 2.70. Let R_{6} denote the group of rotational symmetries of a regular hexagon and let r be rotation by 60° clockwise. It's not too hard to see that $R_{6}=\langle r\rangle$ and $\left|R_{6}\right|=6$. The Cayley diagram for R_{6} with generating set $\{r\}$ is given in Figure 2.4.
(a) Is R_{6} cyclic?
(b) Is R_{6} abelian?
(c) Write r^{-1} as a word in r.
(d) Can you find a shorter word to describe r^{8} ?
(e) Does r^{2} generate the group?
(f) Does r^{5} generate the group?

Now, let's build a few Cayley diagrams to further our intuition.

Figure 2.4. Cayley diagram for R_{6} with generating set $\{r\}$.

Problem 2.71. Construct a Cayley diagram for each of the following groups using the specified generating set.
(a) S_{2} with generating set $\{s\}$ (see Problem 2.62)
(b) R_{4} with generating set $\{r\}$ (see Problem 2.20)
(c) V_{4} with generating set $\{v, h\}$ (see Problem 2.63)
(d) D_{3} with generating set $\{r, s\}$ (see Problem 2.21)
(e) D_{3} with generating set $\left\{s, s^{\prime}\right\}$ (see Problem 2.56)
(f) S_{3} with generating set $\left\{s_{1}, s_{2}\right\}$ (see Problem 2.23)
(g) D_{4} with generating set $\{r, s\}$ (see Problem 2.22)

Not only are Cayley diagrams visually appealing, but they provide a map for the group in question. That is, they provide a method for navigating the group. Following sequences of arrows tells us how to achieve a net action. However, each Cayley diagram very much depends on the set of generators that are chosen to generate the group. If we change the generating set, we may end up with a very different looking Cayley diagram. For example, compare the Cayley diagrams for D_{3} that you constructed in parts (d) and (e) of Problem 2.71.

Before closing out this section, let's tackle a few more problems.
Problem 2.72. Consider the group $(\mathbb{Z},+)$.
(a) Construct a portion of the Cayley diagram for $(\mathbb{Z},+)$ with generating set $\{1\}$.
(b) Construct a portion of the Cayley diagram for $(\mathbb{Z},+)$ with generating set $\{-1\}$. How does this diagram compare to the one in part (a)?
(c) It turns out that $\mathbb{Z}=\langle 2,3\rangle$. Construct a portion of the Cayley diagram for ($\mathbb{Z},+$) with generating set $\{2,3\}$.

Problem 2.73. Assume G is a group. Suppose that S and S^{\prime} are two different sets that generate G. If you draw the Cayley diagram for G using S and then draw the Cayley diagram for G using S^{\prime}, what features of the two graphs are the same and which are potentially different?

Problem 2.74. Consider the diagrams given in Figures 2.5 and 2.6. Explain why neither of these diagrams could possibly be the Cayley diagram for a group.

Figure 2.5

Figure 2.6
While thinking about the previous problem, you likely conjectured the next couple theorems.

Theorem 2.75. If G is a group with generating set S, then for every $g \in G$ and $s \in S$, there is exactly one arrow with color c_{s} pointing from $s^{-1} g$ to g and exactly one arrow with color c_{s} pointing from g to $s g$.
Theorem 2.76. If G is a group with generating set S, then the Cayley diagram for G with generating set S is connected. That is, for every pair of vertices g and h, there is a path of forward or backward arrows connecting g and $h . \S$

Consider the Cayley diagram for D_{3} with generating set $\{r, s\}$ that is given in Figure 2.7. Notice that we labeled the lower right corner of the Cayley diagram with the word $r^{2} s$. This means that we first followed a blue arrow out of e and then two red arrows. However, we could also get to this vertex by first doing a red arrow out of e followed by a blue arrow. So, we could also have labeled this vertex with the word $s r$. The upshot is that $r^{2} s=s r$. These types of group equations are called relations.

[^1]

Figure 2.7. Cayley diagram for D_{3} with generating set $\{r, s\}$.

We discovered this relation by starting at e and then traveling a sequence of arrows to get to the vertex in the lower right corner. However, notice that following a blue and then two red arrows is always the same as following a red arrow and then a blue arrow regardless of which vertex we start at. That is, the local relation $r^{2} s=s r$ starting at e holds globally across the entire Cayley diagram.

Cayley diagrams for groups will always have this uniform symmetry. That is, any local patterns in the diagram appear globally throughout the diagram.

Problem 2.77. Let G be a group with generating set S and consider the corresponding Cayley diagram. Suppose

$$
s_{x_{1}} s_{x_{2}} \cdots s_{x_{n}}=s_{y_{1}} s_{y_{2}} \cdots s_{y_{m}}
$$

is a relation in G, where each $s_{x_{i}}$ and $s_{y_{j}}$ is either an element from S or the inverse of an element from S. Explain what it means for this relation to hold globally across the entire Cayley diagram for G.

You've likely noticed the following theorem while tinkering with examples.
Theorem 2.78. Suppose G is a finite group with generating set S and consider the corresponding Cayley diagram. For $s \in S$, if we follow a sequence of (forward) arrows of color c_{s} out of e, we eventually end up back at e after a finite number of steps.

Problem 2.79. Suppose $\left\{g_{1}, \ldots, g_{n}\right\}$ is a generating set for a group G.
(a) Explain why $\left\{g_{1}^{-1}, \ldots, g_{n}^{-1}\right\}$ is also a generating set for G.
(b) How does the Cayley diagram for G with generating set $\left\{g_{1}, \ldots, g_{n}\right\}$ compare to the Cayley diagram with generating set $\left\{g_{1}^{-1}, \ldots, g_{n}^{-1}\right\}$?

We close this section with two problems that ask you to think about the structure of Cayley diagrams for cyclic groups and abelian groups.

Problem 2.80. Suppose G is a cyclic group.
(a) If G is finite, what conclusions can you make about Cayley diagrams for G ?
(b) If G is infinite, what conclusions can you make about Cayley diagrams for G ?

Problem 2.81. Suppose G is an abelian group with generating set S and consider the corresponding Cayley diagram.
(a) If $s, t \in S$, then what relationship must be true about the corresponding arrows?
(b) Is the converse of your claim in part (a) true? That is, if every pair of arrows in the Cayley diagram for G has the property you stated above, will the group be abelian?

Chapter 3

Subgroups and Isomorphisms

For the next two sections, it would be useful to have all of the Cayley diagrams we've encountered in one place for reference. So, before continuing, gather up the following Cayley diagrams:

- Spin $_{1 \times 2}$. There are 3 of these. I drew one for you in Section 2.6 and you discovered two more in Problem 2.68.
- S_{2}. See Problem 2.71(a).
- R_{4}. See Problem 2.71(b).
- V_{4}. See Problem 2.71(c).
- D_{3}. There are two of these. See Problems 2.71(d) and 2.71(e).
- S_{3}. See Problem 2.71(f).
- D_{4}. See Problem 2.71(g).

3.1 Subgroups

Problem 3.1. Recall the definition of "subset." What do you think "subgroup" means? Try to come up with a potential definition. Try not to read any further before doing this.

Problem 3.2. Examine your Cayley diagrams for D_{4} (with generating set $\{r, s\}$) and R_{4} (with generating set $\{r\}$) and make some observations. How are they similar and how are they different? Can you reconcile the similarities and differences by thinking about the actions of each group?

Hopefully, one of the things you noticed in the previous problem is that we can "see" R_{4} inside of D_{4}. You may have used different colors in each case and maybe even labeled the vertices with different words, but the overall structure of R_{4} is there nonetheless.

Problem 3.3. If you ignore the labels on the vertices and just pay attention to the configuration of arrows, it appears that there are two copies of the Cayley diagram for R_{4} in the Cayley diagram for D_{4}. Isolate these two copies by ignoring the edges that correspond to the generator s. Now, paying close attention to the words that label the vertices from the original Cayley diagram for D_{4}, are either of these groups in their own right?

Recall that the identity must be one of the elements included in a group. If this didn't occur to you when doing the previous problem, you might want to go back and rethink your answer. Just like in the previous problem, we can often "see" smaller groups living inside larger groups. These smaller groups are called subgroups.

Definition 3.4. Let G be a group and let H be a subset of G. Then H is a subgroup of G, written $H \leq G$, provided that H is a group in its own right under the binary operation inherited from G.

The phrase "under the binary operation inherited from G " means that to combine two elements in H, we should treat the elements as if they were in G and perform the binary operation of G.

In light of Problem 3.3, we would write $R_{4} \leq D_{4}$. The second sub-diagram of the Cayley diagram for D_{4} (using $\{r, s\}$ as the generating set) that resembles R_{4} cannot be a subgroup because it does not contain the identity. However, since it looks a lot like R_{4}, we call it a clone of R_{4}. For convenience, we also say that a subgroup is a clone of itself.

Problem 3.5. Let G be a group and let $H \subseteq G$. If we wanted to determine whether H is a subgroup of G, can we skip checking any of the axioms? Which axioms must we verify?

Let's make the observations of the previous problem a bit more formal.
Theorem 3.6 (Two Step Subgroup Test). Suppose G is a group and H is a nonempty subset of G. Then $H \leq G$ if and only if (i) for all $h \in H, h^{-1} \in H$, as well, and (ii) H is closed under the binary operation of G.

Notice that one of the hypotheses of Theorem 3.6 is that H be nonempty. This means that if we want to prove that a certain subset H is a subgroup of a group G, then one of the things we must do is verify that H is in fact nonempty. In light of this, the "Two Step Subgroup Test" should probably be called the "Three Step Subgroup Test".

As Theorems 3.7 and 3.9 will illustrate, there are a couple of subgroups that every group contains.

Theorem 3.7. If G is a group, then $\{e\} \leq G$.
The subgroup $\{e\}$ is referred to as the trivial subgroup. All other subgroups are called nontrivial.

Problem 3.8. Let G be a group. What does the Cayley diagram for the subgroup $\{e\}$ look like? What are you using as your generating set?

Earlier, we referred to subgroups as being "smaller." However, our definition does not imply that this has to be the case.

Theorem 3.9. If G is a group, then $G \leq G$.
We refer to subgroups that are not equal to the whole group as proper subgroups. If H is a proper subgroup, then we may write $H<G$.

Recall Theorem 2.51 that states that if G is a group under * and S is a subset of G, then $\langle S\rangle$ is also a group under $*$. Let's take this a step further.

Theorem 3.10. If G is a group and $S \subseteq G$, then $\langle S\rangle \leq G$. In particular, $\langle S\rangle$ is the smallest subgroup of G containing S.

The subgroup $\langle S\rangle$ is called the subgroup generated by S. In the special case when S equals a single element, say $S=\{g\}$, then

$$
\langle g\rangle=\left\{g^{k} \mid k \in \mathbb{Z}\right\}
$$

which is called the (cyclic) subgroup generated by g. Every subgroup can be written in the "generated by" form. That is, if H is a subgroup of a group G, then there always exists a subset S of G such that $\langle S\rangle=H$. In particular, $\langle H\rangle=H$ for $H \leq G$, and as a special case, we have $\langle G\rangle=G$.

Problem 3.11. Consider $\operatorname{Spin}_{1 \times 2}$ with generating set $\left\{s_{11}, s_{22}, s_{12}\right\}$.
(a) Find the Cayley diagram for the subgroup $\left\langle s_{11}\right\rangle$ inside the Cayley diagram for $\operatorname{Spin}_{1 \times 2}$. Identify all of the clones of $\left\langle s_{11}\right\rangle$ inside $\operatorname{Spin}_{1 \times 2}$.
(b) Find the Cayley diagram for the subgroup $\left\langle s_{11}, s_{22}\right\rangle$ inside the Cayley diagram of Spin $_{1 \times 2}$. Identify the clones of $\left\langle s_{11}, s_{22}\right\rangle$ inside $\operatorname{Spin}_{1 \times 2}$.

One of the benefits of Cayley diagrams is that they are useful for visualizing subgroups. However, recall that if we change our set of generators, we might get a very different looking Cayley diagram. The upshot of this is that we may be able to see a subgroup in one Cayley diagram for a given group, but not be able to see it in the Cayley diagram arising from a different generating set.

Problem 3.12. We currently have two different Cayley diagrams for D_{3} (see Problems 2.21 and 2.56).
(a) Can you find the Cayley diagram for the trivial subgroup $\langle e\rangle$ in either Cayley diagram for D_{3} ? Identify all of the clones of $\langle e\rangle$ in both Cayley diagrams for D_{3}.
(b) Can you find the Cayley diagram for the subgroup $\langle r\rangle=R_{3}$ in either Cayley diagram for D_{3} ? If possible, identify all of the clones of R_{3} in the Cayley diagrams for D_{3}.
(c) Can you find the Cayley diagrams for $\langle s\rangle$ and $\left\langle s^{\prime}\right\rangle$ in either Cayley diagram for D_{3} ? If possible, identify all of the clones of $\langle s\rangle$ and $\left\langle s^{\prime}\right\rangle$ in the Cayley diagrams for D_{3}.

Problem 3.13. Consider D_{4}. Let h be the reflection of the square over the horizontal midline and let v be the reflection over the vertical midline. Which of the following are subgroups of D_{4} ? In each case, justify your answer. If a subset is a subgroup, try to find a minimal generating set. Also, determine whether you can see the subgroups in our Cayley diagram for D_{4} with generating set $\{r, s\}$.
(a) $\left\{e, r^{2}\right\}$
(b) $\{e, h\}$
(c) $\{e, h, v\}$
(d) $\left\{e, h, v, r^{2}\right\}$

Perhaps you recognized the set in part (d) of the previous problem as being the Klein four-group V_{4}. It follows that $V_{4} \leq D_{4}$.

Let's introduce a group we haven't seen yet. Define the quaternion group to be the group $Q_{8}=\{1,-1, i,-i, j,-j, k,-k\}$ having the Cayley diagram with generating set $\{i, j,-1\}$ given in Figure 3.1. In this case, 1 is the identity of the group.

Figure 3.1. Cayley diagram for Q_{8} with generating set $\{-1, i, j\}$.
Notice that I didn't mention what the actions actually do. For now, let's not worry about that. The relationship between the arrows and vertices tells us everything we need to know. Also, let's take it for granted that Q_{8} actually is a group.

Problem 3.14. Consider the Cayley diagram for Q_{8} given in Figure 3.1.
(a) Which arrows correspond to which generators in our Cayley diagram for Q_{8} ?
(b) What is i^{2} equal to? That is, what element of $\{1,-1, i,-i, j,-j, k,-k\}$ is i^{2} equal to? How about i^{3}, i^{4}, and i^{5} ?
(c) What are j^{2}, j^{3}, j^{4}, and j^{5} equal to?
(d) What is $(-1)^{2}$ equal to?
(e) What is $i j$ equal to? How about $j i$?
(f) Can you determine what k^{2} and $i k$ are equal to?
(g) Can you identify a generating set consisting of only two elements? Can you find more than one?
(h) What subgroups of Q_{8} can you see in the Cayley diagram in Figure 3.1?
(i) Find a subgroup of Q_{8} that you cannot see in the Cayley diagram.

Problem 3.15. Consider $\left(\mathbb{R}^{3},+\right)$, where \mathbb{R}^{3} is the set of all 3-entry row vectors with real number entries (e.g., (a, b, c) where $a, b, c \in \mathbb{R}$) and +is ordinary vector addition. It turns out that $\left(\mathbb{R}^{3},+\right)$ is an abelian group with identity $(0,0,0)$.
(a) Let H be the subset of \mathbb{R}^{3} consisting of vectors with first coordinate 0 . Is H a subgroup of \mathbb{R}^{3} ? Prove your answer.
(b) Let K be the subset of \mathbb{R}^{3} consisting of vectors whose entries sum to 0 . Is K a subgroup of \mathbb{R}^{3} ? Prove your answer.
(c) Construct a subset of \mathbb{R}^{3} (different from H and K) that is not a subgroup of \mathbb{R}^{3}.

Problem 3.16. Consider the group $(\mathbb{Z},+)$ (under ordinary addition).
(a) Show that the even integers, written $2 \mathbb{Z}:=\{2 k \mid k \in \mathbb{Z}\}$, form a subgroup of \mathbb{Z}.
(b) Show that the odd integers are not a subgroup of \mathbb{Z}.
(c) Show that all subsets of the form $n \mathbb{Z}:=\{n k \mid k \in \mathbb{Z}\}$ for $n \in \mathbb{Z}$ are subgroups of \mathbb{Z}.
(d) Are there any other subgroups besides the ones listed in part (c)? Explain your answer.
(e) For $n \in \mathbb{Z}$, write the subgroup $n \mathbb{Z}$ in the "generated by" notation. That is, find a set S such that $\langle S\rangle=n \mathbb{Z}$. Can you find more than one way to do $i t$?

Problem 3.17. Consider the group of symmetries of a regular octagon. This group is denoted by D_{8}, where the operation is composition of actions. The group D_{8} consists of 16 elements (8 rotations and 8 reflections). Let H be the subset consisting of the following clockwise rotations: $0^{\circ}, 90^{\circ}, 180^{\circ}$, and 270°. Determine whether H is a subgroup of D_{8} and justify your answer.

Problem 3.18. Consider the groups $(\mathbb{R},+)$ and $(\mathbb{R} \backslash\{0\}, \cdot)$. Explain why $\mathbb{R} \backslash\{0\}$ is not a subgroup of \mathbb{R} despite the fact that $\mathbb{R} \backslash\{0\} \subseteq \mathbb{R}$ and both are groups (under the respective binary operations).

Theorem 3.19. If G is an abelian group such that $H \leq G$, then H is an abelian subgroup.
Problem 3.20. Is the converse of the previous theorem true? If so, prove it. Otherwise, provide a counterexample.

As we've seen, some groups are abelian and some are not. If G is a group, then we define the center of G to be

$$
Z(G):=\{z \in G \mid z g=g z \text { for all } g \in G\} .
$$

Notice that if G is abelian, then $Z(G)=G$. However, if G is not abelian, then $Z(G)$ will be a proper subset of G. In some sense, the center of a group is a measure of how close G is to being abelian.

Theorem 3.21. If G is a group, then $Z(G)$ is an abelian subgroup of G.
Problem 3.22. Find the center of each of the following groups.
(a) S_{2}
(b) V_{4}
(c) S_{3}
(d) D_{3}
(e) D_{4}
(f) R_{4}
(g) R_{6}
(h) $\operatorname{Spin}_{1 \times 2}$
(i) Q_{8}
(j) $(\mathbb{Z},+)$
(k) $(\mathbb{R} \backslash\{0\}, \cdot)$

3.2 Subgroup Lattices

One of the goals of this section is to gain better understanding of the structure of groups by studying their subgroups.

Suppose we wanted to find all of the subgroups of a finite group G. Theorems 3.7 and 3.9 tell us that $\{e\}$ and G itself are subgroups of G, but there may be others. Theorem 3.6 tells us that if we want to find other subgroups of G, we need to find nonempty subsets of G that are closed and contain all the necessary inverses. So, one method for finding subgroups would be to find all possible nonempty subsets of G and then go about determining which subsets are subgroups by verifying whether a given subset is closed under inverses and closed under the operation of G. This is likely to be fairly time consuming.

Another approach would be to utilize the fact that every subgroup H of G has a generating set. That is, if H is a subgroup of a group G, then there always exists a subset S of G such that $\langle S\rangle=H$. Given a subset S of $G,\langle S\rangle$ is guaranteed to be closed under inverses and the operation of the group G. So, we could determine all of the subgroups of G by generating groups with various subsets S of G. Of course, one drawback is that it might take a bit of effort to determine what $\langle S\rangle$ actually is. Another drawback is that two different subsets S and T may generate the same subgroup.

Let's make this a bit more concrete by exploring an example. Consider the group R_{4}. What are the subgroups of R_{4} ? Since the order of R_{4} is 4 , we know that there are $2^{4}-1=15$ nonempty subsets of R_{4}. Some of these are subgroups, but most of them are not. Theorems 3.7 and 3.9 guarantee that $\{e\}$ and R_{4} itself are subgroups of R_{4}. That's

2 out of 15 so far. Are there any others? Let's do an exhaustive search by playing with generating sets. We can certainly be more efficient, but below we list all of the possible subgroups we can generate using subsets of R_{4}. As you scan the list, you should take a moment to convince yourself that the list is accurate.

$$
\begin{array}{ll}
\langle e\rangle=\{e\} & \left\langle r, r^{3}\right\rangle=\left\{e, r, r^{2}, r^{3}\right\} \\
\langle r\rangle=\left\{e, r, r^{2}, r^{3}\right\} & \left\langle r^{2}, r^{3}\right\rangle=\left\{e, r, r^{2}, r^{3}\right\} \\
\left\langle r^{2}\right\rangle=\left\{e, r^{2}\right\} & \left\langle e, r, r^{2}\right\rangle=\left\{e, r, r^{2}, r^{3}\right\} \\
\left\langle r^{3}\right\rangle=\left\{e, r^{3}, r^{2}, r\right\} & \left\langle e, r, r^{3}\right\rangle=\left\{e, r, r^{2}, r^{3}\right\} \\
\langle e, r\rangle=\left\{e, r, r^{2}, r^{3}\right\} & \left\langle e, r^{2}, r^{3}\right\rangle=\left\{e, r, r^{2}, r^{3}\right\} \\
\left\langle e, r^{2}\right\rangle=\left\{e, r^{2}\right\} & \left\langle r, r^{2}, r^{3}\right\rangle=\left\{e, r, r^{2}, r^{3}\right\} \\
\left\langle e, r^{3}\right\rangle=\left\{e, r^{3}, r^{2}, r\right\} & \left\langle e, r, r^{2}, r^{3}\right\rangle=\left\{e, r, r^{2}, r^{3}\right\}
\end{array}
$$

Let's make a few observations. Scanning the list, we see only three distinct subgroups:

$$
\{e\},\left\{e, r^{2}\right\},\left\{e, r, r^{2}, r^{3}\right\} .
$$

Out of 15 nonempty subsets of R_{4}, only 3 subsets are subgroups. Our exhaustive search guarantees that these are the only subgroups of R_{4}. It is also worth pointing out that if a subset contains either r or r^{3}, then that subset generates all of R_{4}. The reason for this is that $\{r\}$ and $\left\{r^{3}\right\}$ are each minimal generating sets for R_{4}. More generally, observe that if we increase the size of the generating subset using an element that was already contained in the subgroup generated by the set, then we don't get anything new. For example, consider $\left\langle r^{2}\right\rangle=\left\{e, r^{2}\right\}$. Since $e \in\left\langle r^{2}\right\rangle$, we don't get anything new by including e in our generating set. We can state this as a general fact.

Theorem 3.23. Let G be a group and let $g_{1}, g_{2}, \ldots, g_{n} \in G$. If $x \in\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle$, then $\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle=\left\langle g_{1}, g_{2}, \ldots, g_{n}, x\right\rangle$.

In the previous theorem, we are not claiming that $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ is a generating set for G-although this may be the case. Instead, are simply making a statement about the subgroup $\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle$, whatever it may be.

We can capture the overall relationship between the subgroups of a group G using a subgroup lattice. Given a group G, the lattice of subgroups of G is the partially ordered set whose elements are the subgroups of G with the partial order relation being set inclusion. It is common to depict the subgroup lattice for a group using a Hasse diagram. The Hasse diagram of subgroup lattice is drawn as follows:
(1) Each subgroup H of G is a vertex.
(2) Vertices corresponding to subgroups with smaller order are placed lower in the diagram than vertices corresponding to subgroups with larger order. In particular,
the vertex for $\{e\}$ is placed at the bottom of the diagram and the vertex for G is placed at the top.
(3) There is an edge going up from H to K if $H \leq K$ and there is no subgroup L such that $H \leq L \leq K$ with $L \neq H, K$.

Notice that there is an upward path of edges in the Hasse diagram from H to K if and only if $H \leq K$. For convenience we will not make a distinction between the subgroup lattice for a group G and the corresponding Hasse diagram.

The Hasse diagram for the subgroup lattice for R_{4} is given in Figure 3.2.

Figure 3.2. Subgroup lattice for R_{4}.
Let's see what we can do with $V_{4}=\{e, v, h, v h\}$. Using an exhaustive search, we find that there are five subgroups:

$$
\begin{aligned}
& \langle e\rangle=\{e\} \\
& \langle h\rangle=\{e, h\} \\
& \langle v\rangle=\{e, v\} \\
& \langle v h\rangle=\{e, v h\} \\
& \langle v, h\rangle=\langle v, v h\rangle=\langle h, v h\rangle=\{e, v, h, v h\}=V_{4}
\end{aligned}
$$

For each subgroup above, we've used minimal generating sets to determine the subgroup. The subgroup lattice for V_{4} is given in Figure 3.3. Notice that there are no edges among $\langle v\rangle,\langle h\rangle$, and $\langle v h\rangle$. The reason for this is that none of these groups are subgroups of each other.

The next two theorems provide some further insight into the overall structure of subgroups of a group.

Theorem 3.24. If G is a group such that $H, K \leq G$, then $H \cap K \leq G$. Moreover, $H \cap K$ is the largest subgroup contained in both H and K.

Figure 3.3. Subgroup lattice for V_{4}.

It turns out that we cannot simply replace "intersection" with "union" in the previous theorem.

Problem 3.25. Provide an example of a group G and subgroups H and K such that $H \cup K$ is not a subgroup of G.

Theorem 3.26. If G is a group such that $H, K \leq G$, then $\langle H \cup K\rangle \leq G$. Moreover, $\langle H \cup K\rangle \leq G$ is the smallest subgroup containing both H and K.

Theorems 3.24 and 3.26 justify the use of the word "lattice" in "subgroup lattice". In general, a lattice is a partially ordered set in which every two elements have a unique meet (also called a greatest lower bound or infimum) and a unique join (also called a least upper bound or supremum). In the case of a subgroup lattice for a group G, the meet of subgroups H and K is $H \cap K$ and the join is $\langle H \cup K\rangle$. Figure 3.4 illustrates the meet (Theorem 3.24) and join (Theorem 3.26) in the case when H and K are not comparable.

In the next few problems, you are asked to create subgroup lattices. As you do this, try to minimize the amount of work it takes to come up with all the subgroups.

Problem 3.27. Find all the subgroups of $R_{5}=\left\{e, r, r^{2}, r^{3}, r^{4}\right\}$ (where r is clockwise rotation of a regular pentagon by 72°) and then draw the subgroup lattice for R_{5}.
Problem 3.28. Find all the subgroups of $R_{6}=\left\{e, r, r^{2}, r^{3}, r^{4}, r^{5}\right\}$ (where r is clockwise rotation of a regular hexagon by 60°) and then draw the subgroup lattice for R_{6}.
Problem 3.29. Find all the subgroups of $D_{3}=\left\{e, r, r^{2}, s, s r, s r^{2}\right\}$ (where r and s are the usual symmetries of an equilateral triangle) and then draw the subgroup lattice for D_{3}.

Problem 3.30. Find all the subgroups of $S_{3}=\left\langle s_{1}, s_{2}\right\rangle$ (where s_{1} is the action that swaps the positions of the first and second coins and s_{2} is the action that swaps the second and third coins; see Problem 2.58) and then draw the subgroup lattice for S_{3}. How does your lattice compare to the one in Problem 3.29? You should look back at parts (e) and (f) of Problem 2.71 and ponder what just happened.

Figure 3.4. Meet and join for subgroups H and K.

Problem 3.31. Find all the subgroups of $D_{4}=\left\{e, r, r^{2}, r^{3}, s, s r, s r^{2}, s r^{3}\right\}$ (where r and s are the usual symmetries of a square) and then draw the subgroup lattice for D_{4}.

Problem 3.32. Find all the subgroups of $Q_{8}=\{1,-1, i,-i, j,-j, k,-k\}$ and then draw the subgroup lattice for Q_{8}.

3.3 Isomorphisms

As we have been exploring various groups, I'm sure you've noticed that some groups seem to look and behave the same. For example, if we choose the same colors for our arrows and ignore the labels on the vertices, the Cayley diagram for D_{3} with generating set $\left\{s, s^{\prime}\right\}$ looks the same as the Cayley diagram for S_{3} with generating set $\left\{s_{1}, s_{2}\right\}$. That is, if we pick the appropriate colors and set the Cayley diagram for D_{3} (with generating set $\left\{s, s^{\prime}\right\}$) on top of the Cayley diagram for S_{3} (with generating set $\left\{s_{1}, s_{2}\right\}$) such that the identities match up, then the two Cayley diagrams are identical up to relabeling the rest of the vertices. Figure 3.5 should make this clear. This act of matching up the Cayley diagrams establishes a correspondence between the elements of the two groups:

$$
\begin{aligned}
& e \mapsto e \\
& s \mapsto s_{1} \\
& s^{\prime} \mapsto s_{2} \\
& s s^{\prime} \mapsto s_{1} s_{2} \\
& s^{\prime} s \mapsto s_{2} s_{1} \\
& s s^{\prime} s \mapsto s_{1} s_{2} s_{1}
\end{aligned}
$$

Notice that each correspondence is compatible with the correspondence of the generators, namely: $s \mapsto s_{1}$ and $s^{\prime} \mapsto s_{2}$. Given this correspondence, it should not be surprising that the subgroup lattices for D_{3} and S_{3} have the same structure.

Figure 3.5. Cayley diagrams for D_{3} and S_{3} with generating sets $\left\{s, s^{\prime}\right\}$ and $\left\{s_{1}, s_{2}\right\}$, respectively.

The goal of this section is to formalize this phenomenon by introducing the notion of an isomorphism. First, let's develop a little more intuition.

If two groups G_{1} and G_{2} have generating sets T_{1} and T_{2} such that we can color the edges of the corresponding Cayley diagrams so that the diagrams are identical up to relabeling of the vertices, then we say that there is a matching between G_{1} and G_{2}. Above, we showed that D_{3} and S_{3} have a matching. It's important to emphasize that the existence of a matching between two groups depends on our choice of generating set. If two Cayley diagrams do not look alike, it does not immediately imply that there is not a matching between the groups since it might be the case that choosing different generating sets for the two groups leads to a matching.

Perhaps you've noticed that the Cayley diagram for R_{4} with generating set $\{r\}$ looks like the Cayley diagram for the subgroup $\langle j\rangle=\{ \pm 1, \pm j\}$ with generating set $\{j\}$ in Q_{8}. That is, there is a matching between R_{4} and $\langle j\rangle$, which we've depicted in Figure 3.6. Similarly, the Cayley diagram for S_{2} with generating set $\{s\}$ looks like the Cayley diagram for the subgroup $\langle-1\rangle=\{ \pm 1\}$ with generating set $\{-1\}$ in Q_{8}. The matching between S_{2} and $\langle-1\rangle$ is depicted in Figure 3.7. It's fairly easy to see that there is also a matching between S_{2} and the subgroup $\langle v\rangle=\{e, v\}$ of V_{4}. Since there is a matching between S_{2} and $\langle-1\rangle$ and a matching between S_{2} and $\langle v\rangle$, there is a matching between $\langle-1\rangle$ and $\langle v\rangle$.

Problem 3.33. We have seen two different Cayley diagrams for D_{3}, one with generating set $\{s, r\}$ and one with generating set $\left\{s, s^{\prime}\right\}$. As Figure 3.5 illustrates, there is a matching between D_{3} and S_{3} that relies on the generating sets $\left\{s, s^{\prime}\right\}$ and $\left\{s_{1}, s_{2}\right\}$, respectively. Find a different matching between D_{3} and S_{3} that utilizes the generating set $\{r, s\}$ for D_{3}.

The next theorem follows immediately from the definition of matching.
Theorem 3.34. If there is a matching between G_{1} and G_{2} using the generating sets T_{1} and T_{2}, respectively, then $\left|G_{1}\right|=\left|G_{2}\right|$ and T_{1} and T_{2} have the same cardinality.

Unfortunately, the converse of the previous theorem is not true in general. That is, two groups that have the same order may or may not have a matching.

Figure 3.6. A matching between $R_{4}=\langle r\rangle$ and $\langle j\rangle \leq Q_{8}$.

Figure 3.7. A matching between $S_{2}=\langle s\rangle$ and $\langle-1\rangle \leq Q_{8}$.

Loosely speaking, if two groups have a matching, then the two groups have the same structure and characteristics. In other words, the two groups essentially do the "same kind" of thing. In particular, the corresponding elements in each group have the same characteristics.

On the other hand, if one group has a property that the other does not have, then the two groups cannot have a matching. For example, if one group is abelian and the other is not, then the two groups cannot have a matching. Moreover, for each element g in one group with the property $g^{k}=e$ for some $k \in \mathbb{Z}$, there must be a corresponding element in the other group with the same property. Otherwise, there cannot be a matching between the two groups.
Problem 3.35. Determine whether there is a matching between D_{4} and $\operatorname{Spin}_{1 \times 2}$.
Problem 3.36. Determine whether there is a matching between R_{4} and V_{4}.
Problem 3.37. Determine whether there is a matching between D_{3} and R_{6}.
Problem 3.38. Determine whether there is a matching between any pair of the following groups: R_{8} (i.e., the group of rotational symmetries of a regular octagon), D_{4}, Q_{8}.

Problem 3.39. Consider two light switches on a wall side by side. Consider the group of actions that consists of all possible actions that you can do to the two light switches. For example, one action is toggle the left light switch while leaving the right alone. Let's call this group L_{2}.
(a) How many distinct actions does L_{2} have?
(b) Can you find a minimal generating set for L_{2} ? If so, give these actions names and then write all of the actions of L_{2} as words in your generator(s).
(c) Using your generating set from part (b), draw the corresponding Cayley diagram for L_{2}.
(d) Determine whether there is a matching between L_{2} and either of R_{4} or V_{4}.

Problem 3.40. Consider three light switches on a wall side by side. Consider the group of actions that consists of all possible actions that you can do to the three light switches. Let's call this group L_{3}. It should be easy to see that L_{3} has 8 distinct actions.
(a) Can you find a minimal generating set for L_{3} ? If so, give these actions names and then write all of the actions of L_{3} as words in your generator(s).
(b) Using your generating set from part (a), draw the corresponding Cayley diagram for L_{3}.
(c) Is L_{3} cyclic? Briefly justify your answer.
(d) Is L_{3} abelian? Briefly justify your answer.
(e) Determine whether there is a matching between L_{3} and any of $R_{8}, D_{4}, \operatorname{Spin}_{1 \times 2}$, or Q_{8}.

Suppose G is a finite group and consider the group table for G. A coloring for the group table is an assignment of a unique color to each element of the group. For example, Figure 3.8 depicts a coloring for the group table of V_{4}.

Figure 3.8. A coloring for the group table of V_{4}.
We say that two finite groups have an identical table coloring, if we can arrange the rows and columns of each table and choose colorings for each table so that the pattern of colors is the same for both tables. Clearly, this is only possible if the two groups have the same order. In Problem 2.65, we showed that R_{4} and V_{4} never have an identical table coloring.

Problem 3.41. Determine whether V_{4} and L_{2} have an identical table coloring.
Problem 3.42. Suppose there is a matching between finite groups G_{1} and G_{2}. Explain why G_{1} and G_{2} must have an identical table coloring.

Problem 3.43. Is the converse of the previous problem true? That is, if G_{1} and G_{2} are finite groups that have an identical table coloring, will there be a matching between G_{1} and G_{2} ?

Problem 3.44. Suppose there is a matching between G_{1} and G_{2} and suppose T_{1} is a generating set for G_{1}. Explain why there must be a generating set T_{2} for G_{2} and an appropriate choice of colors such that the Cayley diagrams for G_{1} and G_{2} using the generating sets T_{1} and T_{2}, respectively, are identical up to relabeling of the vertices.

The last few problems have led us to the following theorem.
Theorem 3.45. If G_{1} and G_{2} are two finite groups, then there is a matching between G_{1} and G_{2} if and only if G_{1} and G_{2} have an identical table coloring.

As you've likely discovered, matchings and identical table coloring (or the lack thereof) are great for developing intuition about when two groups have identical structure, but the process of finding matchings and identical table colorings is cumbersome. Moreover, it turns out to not be a very useful approach for proving theorems. We need a different approach if we want to develop the general theory any further.

If two finite groups G_{1} and G_{2} have an identical table coloring, then the product of corresponding elements yields the corresponding result.

This is the essence of what it means for two groups to have the same structure.
Let's try to make this a little more precise. Suppose $\left(G_{1}, *\right)$ and $\left(G_{2}, \odot\right)$ are two finite groups that have an identical table coloring and let $x_{1}, y_{1} \in G_{1}$. Then these two elements have corresponding elements in the group table for G_{2}, say x_{2} and y_{2}, respectively. In other words, x_{1} and x_{2} have the same color while y_{1} and y_{2} have the same color. Since G_{1} is closed under its binary operation $*$, there exists $z_{1} \in G_{1}$ such that $z_{1}=x_{1} * y_{1}$. But then there must exist a $z_{2} \in G_{2}$ such that z_{2} has the same color as z_{1}. What must be true of $x_{2} \odot y_{2}$? Since the two tables exhibit the same color pattern, it must be the case that $z_{2}=x_{2} \odot y_{2}$. This is what it means for the product of corresponding elements to yield the corresponding result. Figure 3.9 illustrates this phenomenon for group tables.

\qquad

Figure 3.9

We can describe the identical table matching between G_{1} and G_{2} using a function. Let $\phi: G_{1} \rightarrow G_{2}$ be the one-to-one and onto function that maps elements of G_{1} to their corresponding elements in G_{2}. Then $\phi\left(x_{1}\right)=x_{2}, \phi\left(y_{1}\right)=y_{2}$, and $\phi\left(z_{1}\right)=z_{2}$. Since $z_{2}=$ $x_{2} \odot y_{2}$, we obtain

$$
\phi\left(x_{1} * y_{1}\right)=\phi\left(z_{1}\right)=z_{2}=x_{2} \odot y_{2}=\phi\left(x_{1}\right) \odot \phi\left(y_{1}\right)
$$

In summary, it must be the case that

$$
\phi\left(x_{1} * y_{1}\right)=\phi\left(x_{1}\right) \odot \phi\left(y_{1}\right) .
$$

We are now prepared to state a formal definition of what it means for two groups to be isomorphic.

Definition 3.46. Let $\left(G_{1}, *\right)$ and $\left(G_{2}, \odot\right)$ be two groups. Then G_{1} is isomorphic to G_{2}, written $G_{1} \cong G_{2}$, if and only if there exists a one-to-one and onto function $\phi: G_{1} \rightarrow G_{2}$ such that

$$
\begin{equation*}
\phi(x * y)=\phi(x) \odot \phi(y) . \tag{3.1}
\end{equation*}
$$

The function ϕ is referred to as an isomorphism. Equation 3.1 is often referred to as the homomorphic property.

It should be clear from the development that two finite groups are isomorphic if and only if they have an identical table coloring. Moreover, since two finite groups have an identical table coloring if and only if there is a matching between the two groups, it must be the case that two groups are isomorphic if and only if there is a matching between the two groups. The upshot is that we have three different ways to think about what it means for two groups to be isomorphic:
(1) There exists generating sets for the two groups such that the respective Cayley diagrams are identical up to relabeling of the vertices.
(2) There exists a choice of colors and an arrangement of the rows and columns of the group tables such that the two tables exhibit the same pattern of colors.
(3) There exists a bijective function between the two groups that satisfies the homomorphic property.

Problem 3.47. Using the work that you did earlier in this section, determine which of the following groups are isomorphic to each other: $S_{2},\langle-1\rangle$ in $Q_{8}, R_{3}, R_{4}, V_{4}, L_{2},\langle i\rangle$ in Q_{8}, $\left\langle s r, s r^{3}\right\rangle$ in $D_{4}, R_{5}, R_{6}, D_{3}, S_{3}, R_{7}, R_{8}, D_{4}, \operatorname{Spin}_{1 \times 2}, Q_{8}, L_{3}$.

Problem 3.48. Consider the groups $(\mathbb{R},+)$ and $\left(\mathbb{R}^{+}, \cdot\right)$, where \mathbb{R}^{+}is the set of positive real numbers. It turns out that these two groups are isomorphic, but this would be difficult to discover using our previous techniques because the groups are infinite. Define ϕ : $\mathbb{R} \rightarrow \mathbb{R}^{+}$via $\phi(r)=e^{r}$ (where e is the natural base, not the identity). Prove that ϕ is an isomorphism.

Problem 3.49. For each of the following pairs of groups, determine whether the given function is an isomorphism from the first group to the second group.
(a) $(\mathbb{Z},+)$ and $(\mathbb{Z},+), \phi(n)=n+1$.
(b) $(\mathbb{Z},+)$ and $(\mathbb{Z},+), \phi(n)=-n$.
(c) $(\mathbb{Q},+)$ and $(\mathbb{Q},+), \phi(x)=x / 2$.

Problem 3.50. Show that the groups $(\mathbb{Z},+)$ and $(2 \mathbb{Z},+)$ are isomorphic.
Perhaps one surprising consequence of the previous problem is that when dealing with infinite groups, a group can have a proper subgroup that it is isomorphic to. Of course, this never happens with finite groups.

Once we know that two groups are isomorphic, there are lots of interesting things we can say. The next theorem tells us that isomorphisms map the identity element of one group to the identity of the second group. This was already clear using Cayley diagrams and groups tables, but you should try to prove the theorem directly using Definition 3.46.

Theorem 3.51. Suppose $\phi: G_{1} \rightarrow G_{2}$ is an isomorphism from the group $\left(G_{1}, *\right)$ to the group $\left(G_{2}, \odot\right)$. If e_{1} and e_{2} are the identity elements of G_{1} and G_{2}, respectively, then $\phi\left(e_{1}\right)=e_{2}$.

The next theorem tells us that isomorphisms respect inverses.
Theorem 3.52. If $\phi: G_{1} \rightarrow G_{2}$ is an isomorphism from the group ($G_{1}, *$) to the group $\left(G_{2}, \odot\right)$, then $\phi\left(g^{-1}\right)=[\phi(g)]^{-1}$.

It turns out that "isomorphic" (\cong) determines an equivalence relation on the class of all possible groups. The next two theorems justify that \cong is symmetric and transitive.

Theorem 3.53. If $\phi: G_{1} \rightarrow G_{2}$ is an isomorphism from the group $\left(G_{1}, *\right)$ to the group $\left(G_{2}, \odot\right)$, then the function $\phi^{-1}: G_{2} \rightarrow G_{1}$ is an isomorphism.

Theorem 3.54. If $\phi: G_{1} \rightarrow G_{2}$ and $\psi: G_{2} \rightarrow G_{3}$ are isomorphisms from the groups $\left(G_{1}, *\right)$ to $\left(G_{2}, \odot\right)$ and $\left(G_{2}, \odot\right)$ to $\left(G_{3}, \star\right)$, respectively, then the composite function $\psi \circ \phi$ is an isomorphism of G_{1} and G_{3}.

The only thing left to do in order to justify the next theorem is prove that \cong is reflexive.
Theorem 3.55. If \mathcal{G} is any nonempty collection of groups, then the relation \cong is an equivalence relation on \mathcal{G}.

Mathematicians love to classify things. In particular, mathematicians want to classify groups. One can think of this pursuit as a taxonomy of groups. In order to simplify the task, one can classify isomorphism classes (i.e., the equivalence classes determined by \cong) instead of classifying groups. If two groups are isomorphic, then we say that the groups are the same up to isomorphism. If there are k isomorphism classes of order n, then we say that there are k groups of order n up to isomorphism.

Problem 3.56. Explain why all groups with a single element are isomorphic. Justify your answer using group tables.

In light of the previous problem, we say that there is one group of order one up to isomorphism.

Problem 3.57. Suppose that $(G, *)$ is a group of order 2 such that $G=\{e, a\}$. Complete the following group table for G.

Explain why every group of order 2 must be isomorphic to S_{2}.
The previous problem implies that up to isomorphism, there is only one group of order 2.

Problem 3.58. Suppose $(G, *)$ is a group of order 3 such that $G=\{e, a, b\}$. Complete the following group table for G.

$*$	e	a	b
e			
a			
b			

Explain why every group of order 3 must be isomorphic to R_{3}.
Problem 3.59. Suppose $(G, *)$ is a group of order 4 such that $G=\{e, a, b, c\}$. Assuming that e is the identity, the first row and first column of the corresponding group table must be completed as follows.

$*$	e	a	b	c
e	e	a	b	c
a	a	$?$		
b	b			
c	c			

The cell with the question mark cannot be filled with an a. So, this entry must be either e, b, or c. However, it should be easy to see that the cases with b and c are symmetric. Thus, there are two cases: (i) the entry with the question mark is filled with e, or (ii) the entry with the question mark is without loss of generality filled with b. Complete the group table in each of these two cases. Are either of the resulting groups isomorphic to R_{4} or V_{4}. What conclusion can you make about groups of order 4?

So far we've seen that there are unique groups up to isomorphism of orders 1,2 , and 3 , but that there are two groups up to isomorphism of order 4. A natural question to ask is: how many groups are there of order n ?

In a future chapter we will be able to prove that there is only one group up to isomorphism of order 5, namely those groups isomorphic to R_{5}.

We've seen three groups of order 6 , namely R_{6}, D_{3}, and S_{3}. However, $D_{3} \cong S_{3}$ while R_{6} is not isomorphic to either of these. So, we can conclude that there are at least two groups up to isomorphism of order 6. But are there others? It turns out that the answer is no, but why?

The group R_{7} is the group of rotational symmetries of a regular 7-sided polygon. This group has order 7. Are there other groups of order 7 that are not isomorphic to R_{7} ? It turns out that the answer is no, but why?

We've encountered several groups of order 8, namely $D_{4}, \operatorname{Spin}_{1 \times 2}, Q_{8}, R_{8}$, and L_{3}. Of these, only D_{4} and $\operatorname{Spin}_{1 \times 2}$ are isomorphic. Thus, there are at least four groups up to isomorphism of order 8. Are these the only isomorphism types? It turns out that there are five groups of order 8 up to isomorphism.

Let's return to proving some general statements about isomorphisms.
Theorem 3.60. Suppose $\phi: G_{1} \rightarrow G_{2}$ is an isomorphism from the group $\left(G_{1}, *\right)$ to the group $\left(G_{2}, \odot\right)$. If G_{1} is cyclic, then G_{2} is cyclic.
Problem 3.61. Is the converse of Theorem 3.60 true? That is, if $\phi: G_{1} \rightarrow G_{2}$ is an isomorphism from the group $\left(G_{1}, *\right)$ to the group $\left(G_{2}, \odot\right)$ and G_{2} is cyclic, is G_{1} necessarily cyclic? If the converse is true, then prove it. If the converse is false, provide a counterexample.
Theorem 3.62. Suppose $\phi: G_{1} \rightarrow G_{2}$ is an isomorphism from the group $\left(G_{1}, *\right)$ to the group $\left(G_{2}, \odot\right)$. If G_{1} is abelian, then G_{2} is abelian.

If $\phi: G_{1} \rightarrow G_{2}$ is a function, not necessarily an isomorphism, and $X \subseteq G_{1}$, then the set

$$
\phi(X):=\left\{y \in G_{2} \mid \text { there exists } x \in X \text { such that } \phi(x)=y\right\} .
$$

is called the image of X. The next theorem tells us that the image of a subgroup under an isomorphism is also a subgroup.
Theorem 3.63. If $\phi: G_{1} \rightarrow G_{2}$ is an isomorphism and $H \leq G_{1}$, then $\phi(H) \leq G_{2}$.
Suppose G is a group and let $g \in G$. Define $\phi_{g}: G \rightarrow G$ via $\phi_{g}(x)=g x g^{-1}$. The map ϕ_{g} is called conjugation by g.
Theorem 3.64. If G is a group and $g \in G$, then conjugation by g is an isomorphism from G to G.

Now that you've proved the above theorems, it's a good idea to review the key themes. If you were really paying attention, you may have noticed that in a few of the proofs, we did not use the fact that the function was one-to-one and onto despite assuming that the function was an isomorphism.
Problem 3.65. For which of the recent theorems could we remove either the assumption that the function is one-to-one or the assumption that the function is onto?

A function that satisfies the homomorphic property and may or may not be one-to-one or onto is called a homomorphism and will be the subject of a future chapter.
Problem 3.66. What claims can be made about the subgroup lattices of two groups that are isomorphic? What claims can be made about the subgroup lattices of two groups that are not isomorphic? What claims can be made about two groups if their subgroup lattices look nothing alike?

Chapter 4

Families of Groups

In this chapter we will explore a few families of groups, some of which we are already familiar with.

4.1 Cyclic Groups

Recall that if G is a group and $g \in G$, then the cyclic subgroup generated by g is given by

$$
\langle g\rangle=\left\{g^{k} \mid k \in \mathbb{Z}\right\} .
$$

It is important to point out that $\langle g\rangle$ may be finite or infinite. In the finite case, the Cayley diagram with generator g gives us a good indication of where the word "cyclic" comes from (see Problem 4.21). If there exists $g \in G$ such that $G=\langle g\rangle$, then we say that G is a cyclic group.

Problem 4.1. List all of the elements in each of the following cyclic subgroups.
(a) $\langle r\rangle$, where $r \in D_{3}$
(b) $\langle r\rangle$, where $r \in R_{4}$
(c) $\langle r s\rangle$, where $r s \in D_{4}$
(d) $\left\langle r^{2}\right\rangle$, where $r^{2} \in R_{6}$
(e) $\langle i\rangle$, where $i \in Q_{8}$
(f) $\langle 6\rangle$, where $6 \in \mathbb{Z}$ and the operation is ordinary addition

Problem 4.2. Consider the group of invertible 2×2 matrices with real number entries under the operation of matrix multiplication. This group is denoted by $\mathrm{GL}_{2}(\mathbb{R})$. List the elements in the cyclic subgroups generated by each of the following matrices.
(a) $\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$
(b) $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
(c) $\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$

Problem 4.3. Determine whether each of the following groups is cyclic. If the group is cyclic, find at least one generator.
(a) S_{2}
(g) D_{3}
(b) R_{3}
(h) R_{7}
(c) R_{4}
(i) R_{8}
(d) V_{4}
(j) $\operatorname{Spin}_{1 \times 2}$
(e) R_{5}
(k) D_{4}
(f) R_{6}
(l) Q_{8}

Problem 4.4. Determine whether each of the following groups is cyclic. If the group is cyclic, find at least one generator. If you believe that a group is not cyclic, try to sketch an argument.
(a) $(\mathbb{Z},+)$
(c) $\left(\mathbb{R}^{+}, \cdot\right)$
(b) $(\mathbb{R},+)$
(d) $\left(\left\{6^{n} \mid n \in \mathbb{Z}\right\}, \cdot\right)$
(e) $\mathrm{GL}_{2}(\mathbb{R})$ under matrix multiplication
(f) $\left\{(\cos (\pi / 4)+i \sin (\pi / 4))^{n} \mid n \in \mathbb{Z}\right\}$ under multiplication of complex numbers

Theorem 4.5. If G is a cyclic group, then G is abelian.
Problem 4.6. Provide an example of a finite group that is abelian but not cyclic.
Problem 4.7. Provide an example of an infinite group that is abelian but not cyclic.
Theorem 4.8. If G is a group and $g \in G$, then $\langle g\rangle=\left\langle g^{-1}\right\rangle$.
Theorem 4.9. If G is a cyclic group such that G has exactly one element that generates all of G, then the order of G is at most order 2.

Theorem 4.10. If G is a group such that G has no proper nontrivial subgroups, then G is cyclic.

Recall that the order of a group G, denoted $|G|$, is the number of elements in G. We define the order of an element g, written $|g|$, to be the order of $\langle g\rangle$. That is, $|g|=|\langle g\rangle|$. It is clear that G is cyclic with generator g if and only if $|G|=|g|$.

Problem 4.11. What is the order of the identity in any group?
Problem 4.12. Find the orders of each of the elements in each of the groups in Problem 4.3.

Problem 4.13. Consider the group $(\mathbb{Z},+)$. What is the order of 1 ? Are there any elements in \mathbb{Z} with finite order?

Problem 4.14. Find the order of each of the matrices in Problem 4.2.
The next result follows immediately from Theorem 4.8.
Theorem 4.15. If G is a group and $g \in G$, then $|g|=\left|g^{-1}\right|$.
The next result should look familiar and will come in handy a few times in this chapter. We'll take the result for granted and not worry about proving it.

Theorem 4.16 (Division Algorithm). If n is a positive integer and m is any integer, then there exist unique integers q (called the quotient) and r (called the remainder) such that $m=n q+r$, where $0 \leq r<n$.

Theorem 4.17. Suppose G is a group and let $g \in G$. The subgroup $\langle g\rangle$ is finite if and only if there exists $n \in \mathbb{N}$ such that $g^{n}=e .^{*}$

Corollary 4.18. If G is a finite group, then for all $g \in G$, there exists $n \in \mathbb{N}$ such that $g^{n}=e$.
Theorem 4.19. Suppose G is a group and let $g \in G$ such that $\langle g\rangle$ is a finite group. If n is the smallest positive integer such that $g^{n}=e$, then $\langle g\rangle=\left\{e, g, g^{2}, \ldots, g^{n-1}\right\}$ and this set contains n distinct elements. ${ }^{\dagger}$

The next result provides an extremely useful interpretation of the order of an element.
Corollary 4.20. If G is a group and $g \in G$ such that $\langle g\rangle$ is a finite group, then the order of g is the smallest positive integer n such that $g^{n}=e$.

Problem 4.21. Suppose G is a finite cyclic group such that $G=\langle g\rangle$. Using the generating set $\{g\}$, what does the Cayley diagram for G look like?

Problem 4.22. Suppose G is a finite cyclic group of order n with generator g. If we write down the group table for G using $e, g, g^{2}, \ldots, g^{n-1}$ as the labels for the rows and columns, are there any interesting patterns in the table?

Problem 4.23. Notice that in the definition for $\langle g\rangle$, we allow the exponents on g to be negative. Explain why we only need to use positive exponents when $\langle g\rangle$ is a finite group.

The Division Algorithm should come in handy when proving the next theorem.
Theorem 4.24. Suppose G is a group and let $g \in G$ such that $|g|=n$. Then $g^{i}=g^{j}$ if and only if n divides $i-j$.

[^2]Corollary 4.25. Suppose G is a group and let $g \in G$ such that $|g|=n$. If $g^{k}=e$, then n divides k.

Recall that for $n \geq 3, R_{n}$ is the group of rotational symmetries of a regular n-gon, where the operation is composition of actions.

Theorem 4.26. For all $n \geq 3, R_{n}$ is cyclic.
Theorem 4.27. Suppose G is a finite cyclic group of order n. Then G is isomorphic to R_{n} if $n \geq 3, S_{2}$ if $n=2$, and the trivial group if $n=1$.

Most of the previous results have involved finite cyclic groups. What about infinite cyclic groups?

Theorem 4.28. Suppose G is a group and let $g \in G$. The subgroup $\langle g\rangle$ is infinite if and only if each g^{k} is distinct for all $k \in \mathbb{Z} . \ddagger$

Theorem 4.29. If G is an infinite cyclic group, then G is isomorphic to \mathbb{Z} (under the operation of addition).

The upshot of Theorems 4.29 and 4.27 is that up to isomorphism, we know exactly what all of the cyclic groups are.

We now turn our attention to two new groups. Recall that two integers are relatively prime if the only positive integer that divides both of them is 1 . That is, integers n and k are relatively prime if and only if $\operatorname{gcd}(n, k)=1$.

Definition 4.30. Let $n \in \mathbb{N}$ and define the following sets.
(a) $\mathbb{Z}_{n}:=\{0,1, \ldots, n-1\}$
(b) $U_{n}:=\left\{k \in \mathbb{Z}_{n} \mid \operatorname{gcd}(n, k)=1\right\}$

Example 4.31. For example, $\mathbb{Z}_{12}=\{0,1,2,3,4,5,6,7,8,9,10,11\}$ while $U_{12}=\{1,5,7,11\}$ since $1,5,7$, and 11 are the only elements in \mathbb{Z}_{12} that are relatively prime to 12 .

For each set in Definition 4.30, the immediate goal is to determine a binary operation that will yield a group. The key is to use modular arithmetic. Let n be a positive integer. To calculate the sum (respectively, product) of two integers modulo n (we say "mod n " for short), add (respectively, multiply) the two numbers and then find the remainder after dividing the sum (respectively, product) by n. For example, $4+9$ is $3 \bmod 5$ since 13 has remainder 3 when divided by 5 . Similarly, $4 \cdot 9$ is $1 \bmod 5$ since 36 has remainder 1 when divided by 5 . The hope is that these two operations turn \mathbb{Z}_{n} and U_{n} into groups.

We write $i \equiv j(\bmod n)$, and say " i is equivalent to j modulo n " or " i is equal to j modulo n ", if i and j both have the same remainder when divided by n. It is common to abbreviate "modulo" as "mod". It is also common to write $i \equiv_{n} j$, or even $i=j$ if the context is perfectly clear.

[^3]It is well-known, and not too hard to prove, that \equiv_{n} is an equivalence relation on \mathbb{Z}. The corresponding equivalence classes are called congruence classes. The elements of a single congruence class are the integers that all have the same remainder when divided by n. According to the Division Algorithm, there are n congruence classes modulo n, one for each of the remainders $0,1, \ldots, n-1$. We can think of \mathbb{Z}_{n} as the set of canonical representatives of these equivalence classes.

Theorem 4.32. Let n be a positive integer and let $i, j \in \mathbb{Z}$. Then $i \equiv j(\bmod n)$ if and only if n divides $i-j$.

The next result follows immediately from Theorems 4.32 and 4.24 .
Corollary 4.33. Suppose G is a group and let $g \in G$ such that $|g|=n$. Then $g^{i}=g^{j}$ if and only if $i \equiv j(\bmod n)$.

Theorem 4.34. The set \mathbb{Z}_{n} is a group under addition $\bmod n$.
Theorem 4.35. The set U_{n} is a group under multiplication $\bmod n$.
Problem 4.36. Consider \mathbb{Z}_{4}.
(a) Find the group table for \mathbb{Z}_{4}.
(b) Is \mathbb{Z}_{4} cyclic? If so, list elements of \mathbb{Z}_{4} that individually generate \mathbb{Z}_{4}. If \mathbb{Z}_{4} is not cyclic, explain why.
(c) Is \mathbb{Z}_{4} isomorphic to either of R_{4} or V_{4} ? Justify your answer.
(d) Draw the subgroup lattice for \mathbb{Z}_{4}.

Problem 4.37. Consider $U_{10}=\{1,3,7,9\}$.
(a) Find the group table for U_{10}.
(b) Is U_{10} cyclic? If so, list elements of U_{10} that individually generate U_{10}. If U_{10} is not cyclic, explain why.
(c) Is U_{10} isomorphic to either of R_{4} or V_{4} ? Justify your answer.
(d) Is U_{10} isomorphic to \mathbb{Z}_{4} ? Justify your answer.
(e) Draw the subgroup lattice for U_{10}.

Problem 4.38. Consider $U_{12}=\{1,5,7,11\}$.
(a) Find the group table for U_{12}.
(b) Is U_{12} cyclic? If so, list elements of U_{12} that individually generate U_{12}. If U_{12} is not cyclic, explain why.
(c) Is U_{12} isomorphic to either of R_{4} or V_{4} ? Justify your answer.
(d) Draw the subgroup lattice for U_{12}.

In light of Exercises 4.37 and $4.38, U_{n}$ may or may not be cyclic. Nonetheless, as the next theorem illustrates, U_{n} is always abelian.

Theorem 4.39. For all n, U_{n} is abelian.
The upshot of the next theorem is that for $n \geq 3, \mathbb{Z}_{n}$ is just the set of exponents in the set $R_{n}=\left\{e, r, r^{2}, \ldots, r^{n-1}\right\}\left(\right.$ where $\left.e=r^{0}\right)$.

Theorem 4.40. For $n \geq 3, \mathbb{Z}_{n} \cong R_{n}$. Moreover, $\mathbb{Z}_{2} \cong S_{2}$ and \mathbb{Z}_{1} is isomorphic to the trivial group.

One consequence of the previous theorem is that \mathbb{Z}_{n} is always cyclic. Combining the results of Theorems 4.27 and 4.29 together with Theorem 4.40 , we immediately obtain the following.

Theorem 4.41. Let G be a cyclic group. If the order of G is infinite, then G is isomorphic to \mathbb{Z}. If G has finite order n, then G is isomorphic to \mathbb{Z}_{n}.

Now that we have a complete description of the cyclic groups, let's focus our attention on subgroups of cyclic groups.

Theorem 4.42. Suppose G is a cyclic group. If $H \leq G$, then H is also cyclic.
It turns out that for proper subgroups, the converse of Theorem 4.42 is not true.
Problem 4.43. Provide an example of a group G such that G is not cyclic, but all proper subgroups of G are cyclic.

The next result officially settles Problem 3.16(d) and also provides a complete description of the subgroups of infinite cyclic groups up to isomorphism.

Corollary 4.44. The subgroups of \mathbb{Z} are precisely the groups $n \mathbb{Z}$ for $n \in \mathbb{Z}$.
Let's further explore finite cyclic groups.
Theorem 4.45. If G is a finite cyclic group with generator g such that $|G|=n$, then for all $m \in \mathbb{Z},\left|g^{m}\right|=\frac{n}{\operatorname{gcd}(n, m)}$.

Theorem 4.46. If G is a finite cyclic group with generator g such that $|G|=n$, then $\left\langle g^{m}\right\rangle=$ $\left\langle g^{k}\right\rangle$ if and only if $\operatorname{gcd}(m, n)=\operatorname{gcd}(k, n)$. ${ }^{I}$

Problem 4.47. Suppose G is a cyclic group of order 12 with generator g.

[^4](a) Find the orders of each of the following elements: g^{2}, g^{7}, g^{8}.
(b) Which elements of G individually generate G ?

Corollary 4.48. Suppose G is a finite cyclic group with generator g such that $|G|=n$. Then $\langle g\rangle=\left\langle g^{k}\right\rangle$ if and only if n and k are relatively prime. That is, g^{k} generates G if and only if n and k are relatively prime.

Problem 4.49. Consider \mathbb{Z}_{18}.
(a) Find all of the elements of \mathbb{Z}_{18} that individually generate all of \mathbb{Z}_{18}.
(b) Draw the subgroup lattice for \mathbb{Z}_{18}. For each subgroup, list the elements of the corresponding set. Moreover, circle the elements in each subgroup that individually generate that subgroup. For example, $\langle 2\rangle=\{0,2,4,6,8,10,12,14,16\}$. In this case, we should circle $2,4,8,10,14$, and 16 since each of these elements individually generate $\langle 2\rangle$ and none of the remaining elements do. I'll leave it to you to figure out why this is true.

Problem 4.50. Repeat the above exercise, but this time use \mathbb{Z}_{12} instead of \mathbb{Z}_{18}.
Corollary 4.51. If G is a finite cyclic group such that $|G|=p$, where p is prime, then G has no proper nontrivial subgroups.

Problem 4.52. If there is exactly one group up to isomorphism of order n, then to what group are all the groups of order n isomorphic?

Problem 4.53. Suppose G is a group and $x, y \in G$ such that $|x|=m$ and $|y|=n$. Is it true that $|x y|=m n$? If this is true, provide a proof. If this is not true, then provide a counterexample.

The punchline of the next two theorems is Theorem 4.56.
Theorem 4.54. Suppose G is a finite abelian group and let $x, y \in G$ such that $|x|=m$ and $|y|=n$. If $\operatorname{gcd}(m, n)=1$, then $|x y|=m n . \|$

Theorem 4.55. Suppose G is a finite abelian group. If n is the maximal order among all elements in G, then the order of every element in G divides n.**

Recall that every cyclic group is abelian (see Theorem 4.5. However, we know that not every abelian group is cyclic (see Problem 4.6. The next theorem tells us that abelian groups with some additional properties are cyclic.

[^5]Theorem 4.56. If G is a finite abelian group with at most one subgroup of any order, then G is cyclic. ${ }^{++}$

Problem 4.57. Is the converse of Theorem 4.56 true for finite groups? That is, if G is a finite cyclic group, does that imply that G contains at most one subgroup of each order? If the answer is yes, then prove it. Otherwise, provide a counterexample.

We conclude this section with a couple interesting counting problems involving the number of generators of certain cyclic groups.

Problem 4.58. Let p and q be distinct primes. Find the number of generators of $\mathbb{Z}_{p q}$.
Problem 4.59. Let p be a prime. Find the number of generators of $\mathbb{Z}_{p^{r}}$, where r is an integer greater than or equal to 1 .

4.2 Dihedral Groups

We can think of finite cyclic groups as groups that describe rotational symmetry. In particular, R_{n} is the group of rotational symmetries of a regular n-gon. Dihedral groups are those groups that describe both rotational and reflectional symmetry of regular n-gons.

Definition 4.60. For $n \geq 3$, the dihedral group D_{n} is defined to be the group consisting of the symmetry actions of a regular n-gon, where the operation is composition of actions.

For example, as we've seen, D_{3} and D_{4} are the symmetry groups of equilateral triangles and squares, respectively. The symmetry group of a regular pentagon is denoted by D_{5}. It is a well-known fact from geometry that the composition of two reflections in the plane is a rotation by twice the angle between the reflecting lines.

Theorem 4.61. The group D_{n} is a non-abelian group of order $2 n$.
Theorem 4.62. Fix $n \geq 3$ and consider D_{n}. Let r be rotation clockwise by $360^{\circ} / n$ and let s and s^{\prime} be any two adjacent reflections of a regular n-gon. Then
(a) $D_{n}=\langle r, s\rangle=\{\underbrace{e, r, r^{2}, \ldots, r^{n-1}}_{\text {rotations }}, \underbrace{s, s r, s r^{2}, \ldots, s r^{n-1}}_{\text {reflections }}\}$ and
(b) $D_{n}=\left\langle s, s^{\prime}\right\rangle=$ all possible products of s and s^{\prime}.

The next result is an obvious corollary of Theorem 4.62.
Corollary 4.63. For $n \geq 3, R_{n} \leq D_{n}$.
The following theorem generalizes many of the relations we have witnessed in the Cayley diagrams for the dihedral groups D_{3} and D_{4}.

[^6]Theorem 4.64. Fix $n \geq 3$ and consider D_{n}. Let r be rotation clockwise by $360^{\circ} / n$ and let s and s^{\prime} be any two adjacent reflections of a regular n-gon. Then the following relations hold.
(a) $r^{n}=s^{2}=\left(s^{\prime}\right)^{2}=e$,
(b) $r^{-k}=r^{n-k}$ (special case: $r^{-1}=r^{n-1}$),
(c) $s r^{k}=r^{n-k} s$ (special case: $s r=r^{n-1} s$),
(d) $\underbrace{s s^{\prime} s \cdots}_{n \text { factors }}=\underbrace{s^{\prime} s s^{\prime} \cdots}_{n \text { factors }}$.

Problem 4.65. From Theorem 4.62, we know

$$
D_{n}=\langle r, s\rangle=\{\underbrace{e, r, r^{2}, \ldots, r^{n-1}}_{\text {rotations }}, \underbrace{s, s r, s r^{2}, \ldots, s r^{n-1}}_{\text {reflections }}\} .
$$

If you were to create the group table for D_{n} so that the rows and columns of the table were labeled by $e, r, r^{2}, \ldots, r^{n-1}, s, s r, s r^{2}, \ldots, s r^{n-1}$ (in exactly that order), do any patterns arise? Where are the rotations? Where are the reflections?

Problem 4.66. What does the Cayley diagram for D_{n} look like if we use $\{r, s\}$ as the generating set? What if we use $\left\{s, s^{\prime}\right\}$ as the generating set?

4.3 Symmetric Groups

Recall the groups S_{2} and S_{3} from Problems 2.62 and 2.23. These groups act on two and three coins, respectively, that are in a row by rearranging their positions (but not flipping them over). These groups are examples of symmetric groups. In general, the symmetric group on n objects is the set of permutations that rearranges the n objects. The group operation is composition of permutations. Let's be a little more formal.

Definition 4.67. A permutation of a set A is a function $\sigma: A \rightarrow A$ that is both one-to-one and onto.

You should take a moment to convince yourself that the formal definition of a permutation agrees with the notion of rearranging the set of objects. The do-nothing action is the identity permutation, i.e., $\sigma(a)=a$ for all $a \in A$. There are many ways to represent a permutation. One visual way is using permutation diagrams, which we will introduce via examples.

Consider the following diagrams:

Each of these diagrams represents a permutation on five objects. I've given the permutations the names α, β, σ, and γ. The intention is to read the diagrams from the top down. The numbers labeling the nodes along the top are identifying position. Following an edge from the top row of nodes to the bottom row of nodes tells us what position an object moves to. It is important to remember that the numbers are referring to the position of an object, not the object itself. For example, β is the permutation that sends the object in the second position to the fourth position, the object in the third position to the second position, and the object in the fourth position to the third position. Moreover, the permutation β doesn't do anything to the objects in positions 1 and 5.
Problem 4.68. Describe in words what the permutations σ and γ do.
Problem 4.69. Draw the permutation diagram for the do-nothing permutation on 5 objects. This is called the identity permutation. What does the identity permutation diagram look like in general for arbitrary n ?
Definition 4.70. The set of all permutations on n objects is denoted by S_{n}.
Problem 4.71. Draw all the permutation diagrams for the permutations in S_{3}.
Problem 4.72. How many distinct permutations are there in S_{4} ? How about S_{n} for any $n \in \mathbb{N}$?

If S_{n} is going to be a group, we need to know how to compose permutations. This is easy to do using the permutation diagrams. Consider the permutations α and β from earlier. We can represent the composition $\alpha \circ \beta$ via

As you can see by looking at the figure, to compose two permutations, you stack the one that goes first in the composition (e.g., β in the example above) on top of the other and just follow the edges from the top through the middle to the bottom. If you think about how function composition works, this is very natural. The resulting permutation is determined by where we begin and where we end in the composition.

We already know that the order of composition matters for functions, and so it should matter for the composition of permutations. To make this crystal clear, let's compose α and β in the opposite order. We see that

The moral of the story is that composition of permutations does not necessarily commute.
Problem 4.73. Consider α, β, σ, and γ from earlier. Can you find a pair of permutations that do commute? Can you identify any features about your diagrams that indicate why they commuted?

Problem 4.74. Fix $n \in \mathbb{N}$. Convince yourself that any $\rho \in S_{n}$ composed with the identity permutation (in either order) equals ρ.

If S_{n} is going to be a group, we need to know what the inverse of a permutation is.
Problem 4.75. Given a permutation $\rho \in S_{n}$, describe a method for constructing ρ^{-1}. Briefly justify that $\rho \circ \rho^{-1}$ will yield the identity permutation.

At this point, we have all the ingredients we need to prove that S_{n} forms a group under composition of permutations.

Theorem 4.76. The set of permutations on n objects forms a group under the operation of composition. That is, $\left(S_{n}, \circ\right)$ is a group. Moreover, $\left|S_{n}\right|=n!$.

Note that it is standard convention to omit the composition symbol when writing down compositions in S_{n}. For example, we will simply write $\alpha \beta$ to denote $\alpha \circ \beta$.

Permutation diagrams are fun to play with, but we need a more efficient way of encoding information. One way to do this is using cycle notation. Consider α, β, σ, and γ in S_{5} from the previous examples. Below I have indicated what each permutation is equal to using cycle notation.

Each string of numbers enclosed by parentheses is called a cycle and if the string of numbers has length k, then we call it a k-cycle. For example, α consists of a single 5cycle, whereas σ consists of one 2 -cycle and one 3 -cycle. In the case of σ, we say that σ is the product of two disjoint cycles.

One observation that you hopefully made is that if an object in position i remains unchanged, then we don't bother listing that number in the cycle notation. However, if
we wanted to, we could use the 1-cycle (i) to denote this. For example, we could write $\beta=(1)(2,4,3)(5)$. In particular, we could denote the identity permutation in S_{5} using $(1)(2)(3)(4)(5)$. Yet, it is common to simply use (1) to denote the identity in S_{n} for all n.

Notice that the first number we choose to write down for a given cycle is arbitrary. However, the numbers that follow are not negotiable. Typically, we would use the smallest possible number first, but this is not necessary. For example, the cycle $(2,4,7)$ could also be written as $(4,7,2)$ or $(7,2,4)$.

Problem 4.77. Write down all 6 elements in S_{3} using cycle notation.
Problem 4.78. Write down all 24 elements in S_{4} using cycle notation.
Suppose $\sigma \in S_{n}$. Since σ is one-to-one and onto, it is clear that it is possible to write σ as a product of disjoint cycles such that each $i \in\{1,2, \ldots, n\}$ appears exactly once.

Let's see if we can figure out how to multiply elements of S_{n} using cycle notation. Consider the permutations $\alpha=(1,3,2)$ and $\beta=(3,4)$ in S_{4}. To compute the composition $\alpha \beta=(1,3,2)(3,4)$, let's explore what happens in each position. Since we are doing function composition, we should work our way from right to left. Since 1 does not appear in the cycle notation for β, we know that $\beta(1)=1$ (i.e., β maps 1 to 1). Now, we see what $\alpha(1)=3$. Thus, the composition $\alpha \beta$ maps 1 to 3 (since $\alpha \beta(1)=\alpha(\beta(1))=\alpha(1)=3)$. Next, we should return to β and see what happens to 3 -which is where we ended a moment ago. We see that β maps 3 to 4 and then α maps 4 to 4 (since 4 does not appear in the cycle notation for α). So, $\alpha \beta(3)=4$. Continuing this way, we see that β maps 4 to 3 and α maps 3 to 2 , and so $\alpha \beta$ maps 4 to 2 . Lastly, since $\beta(2)=2$ and $\alpha(2)=1$, we have $\alpha \beta(2)=1$. Putting this altogether, we see that $\alpha \beta=(1,3,4,2)$. Now, you should try a few. Things get a little trickier if the composition of two permutations results in a permutation consisting of more than a single cycle.

Problem 4.79. Consider α, β, σ, and γ for which we drew the permutation diagrams. Using cycle notation, compute each of the following.
(a) $\alpha \gamma$
(g) $\alpha^{-1} \sigma^{-1}$
(b) α^{2}
(h) β^{2}
(c) α^{3}
(i) β^{3}
(d) α^{4}
(j) $\beta \gamma \alpha$
(e) α^{5}
(k) σ^{3}
(f) $\sigma \alpha$
(l) σ^{6}

Problem 4.80. Write down the group table for S_{3} using cycle notation.
In Problem 4.78, one of the permutations you should have written down is $(1,2)(3,4)$. This is a product of two disjoint 2 -cycles. It is worth pointing out that each cycle is a permutation in its own right. That is, $(1,2)$ and $(3,4)$ are each permutations. It just so
happens that their composition does not "simplify" any further. Moreover, these two disjoint 2 -cycles commute since $(1,2)(3,4)=(3,4)(1,2)$. In fact, this phenomenon is always true.

Theorem 4.81. Suppose α and β are two disjoint cycles. Then $\alpha \beta=\beta \alpha$. That is, products of disjoint cycles commute.

Problem 4.82. Compute the orders of all the elements in S_{3}. See Problem 4.77.
Problem 4.83. Compute the orders of any twelve of the elements in S_{4}. See Problem 4.78.
Computing the order of a permutation is fairly easy using cycle notation once we figure out how to do it for a single cycle. In fact, you've probably already guessed at the following theorem.

Theorem 4.84. If $\alpha \in S_{n}$ such that α consists of a single k-cycle, then $|\alpha|=k$.
Theorem 4.85. Suppose $\alpha \in S_{n}$ such that α consists of m disjoint cycles of lengths k_{1}, \ldots, k_{m}. Then $|\alpha|=\operatorname{lcm}\left(k_{1}, \ldots, k_{m}\right) . \ddagger \ddagger$

Problem 4.86. Is the previous theorem true if we do not require the cycles to be disjoint? Justify your answer.

Problem 4.87. What is the order of $(1,4,7)(2,5)(3,6,8,9)$?
Problem 4.88. Draw the subgroup lattice for S_{3}.
Problem 4.89. Now, using $(1,2)$ and $(1,2,3)$ as generators, draw the Cayley diagram for S_{3}. Look familiar?

Problem 4.90. Consider S_{3}.
(a) Using $(1,2),(1,3)$, and $(2,3)$ as generators, draw the Cayley diagram for S_{3}.
(b) In the previous part, we used a generating set with three elements. Is there a smaller generating set? If so, what is it?

Problem 4.91. Recall that there are $4!=24$ permutations in S_{4}.
(a) Pick any 12 permutations from S_{4} and verify that you can write them as words in the 2 -cycles $(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)$. In most circumstances, your words will not consist of products of disjoint 2 -cycles. For example, the permutation (1,2,3) can be decomposed into $(1,2)(2,3)$, which is a word consisting of two 2 -cycles that happen to not be disjoint.
(b) Using your same 12 permutations, verify that you can write them as words only in the 2 -cycles $(1,2),(2,3),(3,4)$.

By the way, it might take some trial and error to come up with a way to do this. Moreover, there is more than one way to do it.
$\ddagger \ddagger$ Recall that $\operatorname{lcm}\left(k_{1}, \ldots, k_{m}\right)$ is the least common multiple of $\left\{k_{1}, \ldots, k_{m}\right\}$.

As the previous exercises hinted at, the 2-cycles play a special role in the symmetric groups. In fact, they have a special name. A transposition is a single cycle of length 2 . In the special case that the transposition is of the form $(i, i+1)$, we call it an adjacent transposition. For example, $(3,7)$ is a (non-adjacent) transposition while $(6,7)$ is an adjacent transposition.

It turns out that the set of transpositions in S_{n} is a generating set for S_{n}. In fact, the adjacent transpositions form an even smaller generating set for S_{n}. To get some intuition, let's play with a few examples.

Problem 4.92. Try to write each of the following permutations as a product of transpositions. You do not necessarily need to use adjacent transpositions.
(a) $(3,1,5)$
(b) $(2,4,6,8)$
(c) $(3,1,5)(2,4,6,8)$
(d) $(1,6)(2,5,3)$

The products you found in the previous exercise are called transposition representations of the given permutation.

Problem 4.93. Consider the arbitrary k-cycle $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ from S_{n} (with $k \leq n$). Find a way to write this permutation as a product of 2 -cycles.

Problem 4.94. Consider the arbitrary 2 -cycle (a, b) from S_{n}. Find a way to write this permutation as a product of adjacent 2-cycles.

The previous two problems imply the following theorem.
Theorem 4.95. Consider S_{n}.
(a) Every permutation in S_{n} can be written as a product of transpositions.
(b) Every permutation in S_{n} can be written as a product of adjacent transpositions.

Corollary 4.96. The set of transpositions (respectively, the set of adjacent transpositions) from S_{n} forms a generating set for S_{n}.

It is important to point out that the transposition representation of a permutation is not unique. That is, there are many words in the transpositions that will equal the same permutation. However, as we shall see in the next section, given two transposition representations for the same permutation, the number of transpositions will have the same parity (i.e., even versus odd).

Remark 4.97. Here are two interesting facts that I will let you ponder on your own time.
(a) The group of rigid motion symmetries for a cube is isomorphic to S_{4}. To convince yourself of this fact, first prove that this group has 24 actions and then ponder the action of S_{4} on the four long diagonals of a cube.

Figure 4.1. Truncated cube. [Image source: Wikipedia]
(b) It turns out that you can generate S_{4} with $(1,2)$ and $(1,2,3,4)$. Moreover, you can arrange the Cayley diagram for S_{4} with these generators on a truncated cube, which is depicted in Figure 4.1. Try it.

It turns out that the subgroups of symmetric groups play an important role in group theory.

Definition 4.98. Every subgroup of a symmetric group is called a permutation group.
The proof of the following theorem isn't too bad, but we'll take it for granted. After tinkering with a few examples, you should have enough intuition to see why the theorem is true and how a possible proof might go.

Theorem 4.99 (Cayley's Theorem). Every finite group is isomorphic to some permutation group. In particular, if G is a group of order n, then G is isomorphic to a subgroup of S_{n}.

Cayley's Theorem guarantees that every finite group is isomorphic to a permutation group and it turns out that there is a rather simple algorithm for constructing the corresponding permutation group. I'll briefly explain an example and then let you try a couple.

Consider the Klein four-group $V_{4}=\{e, v, h, v h\}$. Recall that V_{4} has the following group table.

$*$	e	v	h	$v h$
e	e	v	h	$v h$
v	v	e	$v h$	h
h	h	$v h$	e	v
$v h$	$v h$	h	v	e

If we number the elements e, v, h, and $v h$ as $1,2,3$, and 4 , respectively, then we obtain the following table.

	1	2	3	4
1	1	2	3	4
2	2	1	4	3
3	3	4	1	2
4	4	3	2	1

Comparing each of the four columns to the leftmost column, we can obtain the corresponding permutations. In particular, we obtain

$$
\begin{aligned}
e & \leftrightarrow(1) \\
v & \leftrightarrow(1,2)(3,4) \\
h & \leftrightarrow(1,3)(2,4) \\
v h & \leftrightarrow(1,4)(2,3) .
\end{aligned}
$$

Do you see where these permutations came from? The claim is that the set of permutations $\{(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$ is isomorphic to V_{4}. In this particular case, it's fairly clear that this is true. However, it takes some work to prove that this process will always result in an isomorphic permutation group. In fact, verifying the algorithm is essentially the proof of Cayley's Theorem.

Since there are potentially many ways to rearrange the rows and columns of a given table, it should be clear that there are potentially many isomorphisms that could result from the algorithm described above.

Here's another way to obtain a permutation group that is isomorphic to a given group. Let's consider V_{4} again. Recall that V_{4} is a subset of D_{4}, which is the symmetry group for a square. Alternatively, V_{4} is the symmetry group for a non-square rectangle. Label the corners of the rectangle $1,2,3$, and 4 by starting in the upper left corner and continuing clockwise. Recall that v is the action that reflects the rectangle over the vertical midline. The result of this action is that the corners labeled by 1 and 2 switch places and the corners labeled by 3 and 4 switch places. Thus, v corresponds to the permutation $(1,2)(3,4)$. Similarly, h swaps the corners labeled by 1 and 4 and the corners labeled by 2 and 3 , and so h corresponds to the permutation $(1,4)(2,3)$. Notice that this is not the same answer we got earlier and that's okay as there may be many permutation representations for a given group. Lastly, vh rotates the rectangle 180° which sends ends up swapping corners labeled 1 and 3 and swapping corners labeled by 2 and 4 . Therefore, $v h$ corresponds to the permutation $(1,3)(2,4)$.
Problem 4.100. Consider D_{4}.
(a) Using the method outlined above, find a subgroup of S_{8} that is isomorphic to D_{4}.
(b) Label the corners of a square 1-4. Find a subgroup of S_{4} that is isomorphic to D_{4} by considering the natural action of D_{4} on the labels on the corners of the square.
Problem 4.101. Consider \mathbb{Z}_{6}.
(a) Using the method outlined earlier, find a subgroup of S_{6} that is isomorphic to \mathbb{Z}_{6}.
(b) Label the corners of a regular hexagon 1-6. Find a subgroup of S_{6} that is isomorphic to \mathbb{Z}_{6} by considering the natural action of \mathbb{Z}_{6} on the labels on the corners of the hexagon.

4.4 Alternating Groups

In this section, we describe a special class of permutation groups. To get started, let's play with a few exercises.

Problem 4.102. Write down every permutation in S_{3} as a product of 2-cycles in the most efficient way you can find (i.e., use the fewest possible transpositions). Now, write every permutation in S_{3} as a product of adjacent 2-cycles, but don't worry about whether your decompositions are efficient. Any observations about the number of transpositions you used in each case? Think about even versus odd.

Lemma 4.103. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ is a collection of 2 -cycles in S_{n} such that $\alpha_{1} \alpha_{2} \cdots \alpha_{k}=(1)$, then k must be even.

Proof. Suppose $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ is a collection of 2 -cycles in S_{n} such that $\alpha_{1} \alpha_{2} \cdots \alpha_{k}=(1)$. We need to show that k is even. We proceed by strong induction. First, it is clear that the statement is not true when $k=1$, but is true when $k=2$.

Now, assume that $k>2$ and if $j \leq k-1$ and we have a product of $j 2$-cycles that equals the identity, then j is even. Consider $\alpha_{1} \alpha_{2}$. The only possibilities are:
(i) $\alpha_{1} \alpha_{2}=(a, b)(a, b)$,
(ii) $\alpha_{1} \alpha_{2}=(a, b)(a, c)$,
(iii) $\alpha_{1} \alpha_{2}=(a, b)(c, d)$,
(iv) $\alpha_{1} \alpha_{2}=(a, b)(b, c)$.

If case (i) happens, then

$$
(1)=\alpha_{1} \alpha_{2} \cdots, \alpha_{k}=\alpha_{3} \alpha_{4} \cdots \alpha_{k}
$$

Since the expression on the right consists of $k-2$ factors, $k-2$ must be even by induction, which implies that k is even. Now, suppose we are in one of cases (ii), (iii), or (iv). Observe that:
(ii) $(a, b)(a, c)=(b, c)(a, b)$,
(iii) $(a, b)(c, d)=(c, d)(a, b)$,
(iv) $(a, b)(b, c)=(b, c)(a, c)$.

In each case, we were able to move a from the original left 2 -cycle to a new right 2 cycle. That is, we were able to rewrite $\alpha_{1} \alpha_{2}$ so that a does not appear in the left 2cycle. Systematically repeat this process for the pairs $\alpha_{2} \alpha_{3}, \alpha_{3} \alpha_{4}, \ldots, \alpha_{k-1} \alpha_{k}$. If we ever encounter case (i) along the way, then we are done by induction. Otherwise, we are able to rewrite $\alpha_{1} \alpha_{2} \cdots \alpha_{k}$ so that a only appears in the rightmost 2-cycle. But this implies that $\alpha_{1} \alpha_{2} \cdots \alpha_{k}$ does not fix a, which contradicts $\alpha_{1} \alpha_{2} \cdots \alpha_{k}=(1)$. This implies that at some point we must encounter case (i), and hence k is even by induction.

Theorem 4.104. If $\sigma \in S_{n}$, then every transposition representation of σ has the same parity.

The previous theorem tells us that the following definition is well-defined.
Definition 4.105. A permutation is even (respectively, odd) if one of its transposition representations consists of an even (respectively, odd) number of transpositions.

Problem 4.106. Classify all of the permutations in S_{3} as even or odd.
Problem 4.107. Classify all of the permutations in S_{4} as even or odd.
Problem 4.108. Determine whether $(1,4,2,3,5)$ is even or odd. How about $(1,4,2,3,5)(7,9)$?
Problem 4.109. Consider the arbitrary k-cycle $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ from S_{n} (with $k \leq n$). When will this cycle be odd versus even? Briefly justify your answer.
Problem 4.110. Conjecture a statement about when a permutation will be even versus odd. Briefly justify your answer.

And finally, we are ready to introduce the alternating groups.
Definition 4.111. The set of all even permutations in S_{n} is denoted by A_{n} and is called the alternating group.

Since we referred to A_{n} as a group, it darn well better be a group!
Theorem 4.112. The set A_{n} forms a group under composition of permutations and has order $n!/ 2$. $\$ \$$

Problem 4.113. Find A_{3}. What group is A_{3} isomorphic to?
Problem 4.114. Find A_{4} and then draw its subgroup lattice. Is A_{4} abelian?
Problem 4.115. What is the order of A_{5} ? Is A_{5} abelian?
Problem 4.116. What are the possible orders for elements in S_{6} and A_{6} ? What about S_{7} and A_{7} ?

Problem 4.117. Does A_{8} contain an element of order 15? If so, find one. If not, explain why no such element exists.
Remark 4.118. Below are a few interesting facts about A_{4} and A_{5}, which we will state without proof.
(a) The group of rigid motion symmetries for a regular tetrahedron is isomorphic to A_{4}.
(b) You can arrange the Cayley diagram for A_{4} with generators $(1,2)(3,4)$ and $(2,3,4)$ on a truncated tetrahedron, which is depicted in Figure 4.2(a).
(c) You can arrange the Cayley diagram for A_{5} with generators $(1,2)(3,4)$ and $(1,2,3,4,5)$ on a truncated icosahedron, which is given in Figure 4.2(b). You can also arrange the Cayley diagram for A_{5} with generators $(1,2,3)$ and $(1,5)(2,4)$ on a truncated dodecahedron seen in Figure 4.2(c).

[^7]

Figure 4.2. Truncated tetrahedron, truncated icosahedron, and truncated dodecahedron. [Image source: Wikipedia]

Chapter 5

Cosets, Lagrange's Theorem, and Normal Subgroups

5.1 Cosets

Undoubtably, you've noticed numerous times that if G is a group with $H \leq G$ and $g \in G$, then both $|H|$ and $|g|$ divide $|G|$. The theorem that says this is always the case is called Lagrange's theorem and we'll prove it towards the end of this chapter. We begin with a definition.

Definition 5.1. Let G be a group and let $H \leq G$ and $a \in G$. The subsets

$$
a H:=\{a h \mid h \in H\}
$$

and

$$
H a:=\{h a \mid h \in H\}
$$

are called the left and right cosets of H containing a, respectively.
To gain some insight, let's tinker with an example. Consider the dihedral group $D_{3}=$ $\langle r, s\rangle$ and let $H=\langle s\rangle \leq D_{3}$. To compute the right cosets of H, we need to multiply all of the elements of H on the right by the elements of G. We see that

$$
\begin{aligned}
& H e=\{e e, s e\}=\{e, s\}=H \\
& H r=\{e r, s r\}=\{r, s r\} \\
& H r^{2}=\left\{e r^{2}, s r^{2}\right\}=\left\{r^{2}, r s\right\} \\
& H s=\{e s, s s\}=\{s, e\}=H \\
& H s r=\{e s r, s s r\}=\{s r, r\} \\
& H r s=\{e r s, s r s\}=\left\{r s, s s r^{2}\right\}=\left\{r s, r^{2}\right\} .
\end{aligned}
$$

Despite the fact that we made six calculations (one for each element in D_{3}), if we scan the list, we see that there are only 3 distinct cosets, namely

$$
\begin{aligned}
& H=H e=H s=\{e, s\} \\
& H r=H s r=\{r, s r\} \\
& H r^{2}=H r s=\left\{r^{2}, r s\right\} .
\end{aligned}
$$

We can make a few more observations. First, the resulting cosets formed a partition of D_{3}. That is, every element of D_{3} appears in exactly one coset. Moreover, all the cosets are the same size-two elements in each coset in this case. Lastly, each coset can be named in multiple ways. In particular, the elements of the coset are exactly the elements of D_{3} we multiplied H by. For example, $H r=H s r$ and the elements of this coset are r and $s r$. Shortly, we will see that these observations hold, in general.

Here is another significant observation we can make. Consider the Cayley diagram for D_{3} with generating set $\{r, s\}$ that is given in Figure 5.1. Given this Cayley diagram, we can visualize the subgroup H and its clones. Moreover, H and its clones are exactly the 3 right cosets of H. We'll see that, in general, the right cosets of a given subgroup are always the subgroup and its clones (see Problem 5.15).

Figure 5.1. Cayley diagram for D_{3} with generating set $\{r, s\}$.

Problem 5.2. Consider the group D_{3}. Find all the left cosets for $H=\langle s\rangle$. Are they the same as the right cosets? Are they the same as the subgroup H and its clones that we can see in the Cayley graph for D_{3} with generating set $\{r, s\}$?

As the previous exercise indicates, the collections of left and right cosets may not be the same and when they are not the same, the subgroup and its clones do not coincide with the left cosets.

You might be thinking that somehow right cosets are "better" than left cosets since we were able to visualize them in the Cayley graph. However, this is just a consequence of our convention of composing actions from right to left. If we had adopted a left to right convention, then we would be able to visualize the left cosets in Cayley diagrams.

Computing left and right cosets using a group table is fairly easy. Hopefully, you figured out in Problem 5.2 that the left cosets of $H=\langle s\rangle$ in D_{3} are $H=\{e, s\}, s r H=\left\{r^{2}, s r\right\}$, and $r s H=\{r, r s\}$. Now, consider the following group table for D_{3} that has the rows and columns arranged according to the left cosets of H.

$*$	e	s	$s r$	r^{2}	$r s$	r
e	e	s	$s r$	r^{2}	$r s$	r
s	s	e	r	$r s$	r^{2}	$s r$
$s r$	$s r$	r^{2}	e	s	r	$r s$
r^{2}	r^{2}	$s r$	$r s$	r	s	e
$r s$	$r s$	r	r^{2}	$s r$	e	s
r	r	$r s$	s	e	$s r$	r^{2}

The left coset $s r H$ must appear in the row labeled by $s r$ and in the columns labeled by the elements of $H=\{e, s\}$. We've depicted this below.

$*$	e	s	$s r$	r^{2}	$r s$	r
e	e	s	$s r$	r^{2}	$r s$	r
s	s	e	r	$r s$	r^{2}	$s r$
$s r$	$s r$	r^{2}	e	s	r	$r s$
r^{2}	r^{2}	$s r$	$r s$	r	s	e
$r s$	$r s$	r	r^{2}	$s r$	e	s
r	r	$r s$	s	e	$s r$	r^{2}

On the other hand, the right coset Hsr must appear in the column labeled by $s r$ and the rows labeled by the elements of $H=\{e, s\}$:

$*$	e	s	$s r$	r^{2}	$r s$	r
e	e	s	$s r$	r^{2}	$r s$	r
s	s	e	r	$r s$	r^{2}	$s r$
$s r$	$s r$	r^{2}	e	s	r	$r s$
r^{2}	r^{2}	$s r$	$r s$	r	s	e
$r s$	$r s$	r	r^{2}	$s r$	e	s
r	r	$r s$	s	e	$s r$	r^{2}

As we can see from the tables, $s r H \neq H s r$ since $\left\{s r, r^{2}\right\} \neq\{s r, r\}$. If we color the entire group table for D_{3} according to which left coset an element belongs to, we get the following.

$*$	e	s	$s r$	r^{2}	$r s$	r
e	e	s	$s r$	r^{2}	$r s$	r
s	s	e	r	$r s$	r^{2}	$s r$
$s r$	$s r$	r^{2}	e	s	r	$r s$
r^{2}	r^{2}	$s r$	$r s$	r	s	e
$r s$	$r s$	r	r^{2}	$s r$	e	s
r	r	$r s$	s	e	$s r$	r^{2}

We would get a similar table (but in this case, not identical) if we colored the elements according to the right cosets.

Let's tackle a few more examples.
Problem 5.3. Consider D_{3} and let $K=\langle r\rangle$.
(a) Find all of the left cosets of K and then find all of the right cosets of K in D_{3}. Any observations?
(b) Write down the group table for D_{3}, but this time arrange the rows and columns according to the left cosets for K. Color the entire table according to which left coset an element belongs to. Can you visualize the observations you made in part (a)?

Problem 5.4. Consider Q_{8}. Let $H=\langle i\rangle$ and $K=\langle-1\rangle$.
(a) Find all of the left cosets of H and all of the right cosets of H in Q_{8}.
(b) Write down the group table for Q_{8} so that rows and columns are arranged according to the left cosets for H. Color the entire table according to which left coset an element belongs to.
(c) Find all of the left cosets of K and all of the right cosets of K in Q_{8}.
(d) Write down the group table for Q_{8} so that rows and columns are arranged according to the left cosets for K. Color the entire table according to which left coset an element belongs to.

Problem 5.5. Consider S_{4}. Find all of the left cosets and all of the right cosets of A_{4} in S_{4}. Instead of doing brute-force, try to be clever. Hint: What happens when you compose two even permutations versus an even permutation and an odd permutation?

Problem 5.6. Consider \mathbb{Z}_{8}. Find all of the left cosets and all of the right cosets of $\langle 4\rangle$ in \mathbb{Z}_{8}. Why do you know the left and right cosets are the same without actually verifying?

Problem 5.7. Consider $(\mathbb{Z},+)$. Find all of the left cosets and all of the right cosets of $3 \mathbb{Z}$ in \mathbb{Z}. Why do you know the left and right cosets are the same without actually verifying?

Theorem 5.8. Let G be a group and let $H \leq G$. If G is abelian, then for all $a \in G, a H=H a$. That is, if G is abelian, then the left cosets of H are the same as the right cosets of H.

Exercises 5.2 and 5.3 illustrate that if a group is non-abelian, then the cosets of a subgroup may or may not coincide. That is, knowing that the group is non-abelian is not enough to determine whether the left and right cosets are different.

In all of the examples we've seen so far, the left and right cosets partitioned G into equal-sized chunks. We need to prove that this is true in general. To prove that the cosets form a partition, we will define an appropriate equivalence relation.

Theorem 5.9. Let G be a group and let $H \leq G$. Define \sim_{L} and \sim_{R} via

$$
a \sim_{L} b \text { if and only if } a^{-1} b \in H
$$

and

$$
a \sim_{R} b \text { if and only if } a b^{-1} \in H .
$$

Then both \sim_{L} and \sim_{R} are equivalence relations. ${ }^{*}$
${ }^{*}$ You only need to prove that either \sim_{L} or \sim_{R} is an equivalence relation as the proof for the other is similar.

Since \sim_{L} and \sim_{R} are equivalence relations, the corresponding equivalence classes form a partition of G. If $a \in G$, then the "left" and "right" equivalence classes containing a are given by

$$
[a]_{\sim_{L}}=\left\{g \in G \mid a \sim_{L} g\right\}
$$

and

$$
[a]_{\sim_{R}}=\left\{g \in G \mid a \sim_{R} g\right\} .
$$

The next theorem tells us that the equivalence classes determined by \sim_{L} and \sim_{R} are indeed the left and right cosets of $H \leq G$, respectively.
Theorem 5.10. If G is a group and $H \leq G$, then $[a]_{\sim_{L}}=a H$ and $[a]_{\sim_{R}}=H a$ for all $a \in G$.
Corollary 5.11. If G is a group and $H \leq G$, then the left (respectively, right) cosets of H form a partition of G.

Next, we argue that all of the cosets have the same size.
Theorem 5.12. Let G be a group, $H \leq G$, and $a \in G$. Define $\phi: H \rightarrow a H$ via $\phi(h)=a h$. Then ϕ is one-to-one and onto.

Corollary 5.13. Let G be a group and let $H \leq G$. Then all of the left and right cosets of H are the same size as H. In other words $\#(a H)=|H|=\#(H a)$ for all $a \in G .{ }^{+}$

The next theorem provides a useful characterization of cosets. Each part can either be proved directly or by appealing to previous results in this section.
Theorem 5.14. Let G be a group and let $H \leq G$.
(a) If $a \in G$, then $a \in a H$ (respectively, $H a$).
(b) We have $b \in a H$ (respectively, $H a$) if and only if $a H=b H$ (respectively, $H a=H b$).
(c) If $a \in H$, then $a H=H=H a$.
(d) If $a \notin H$, then for all $h \in H$, $a h \notin H$ (respectively, $h a \notin H$).

The upshot of part (b) of Theorem 5.14 is that cosets can have different names. In particular, if b is an element of the left coset $a H$, then we could have just as easily called the coset by the name $b H$. In this case, both a and b are called coset representatives.

The final result of this section verifies that the clones of a subgroup in a Cayley diagram coincide with the right cosets of the subgroup.

Problem 5.15. Let G be a finite group with generating set S and let H be a proper subgroup of G and suppose we can visualize the subgroup for H in the Cayley diagram for G using S as the generating set.
(a) If $g \in G$, verify that the right coset $H g$ is a clone of H. Hint: Suppose $s \in S$ and $h_{1}, h_{2} \in H$ such that there is an arrow labeled by s that points from h_{1} to h_{2}. Argue that there is an arrow labeled by s pointing from $h_{1} g$ to $h_{2} g$.
(b) If C is a clone of H, prove that C is a right coset of H.

[^8]
5.2 Lagrange's Theorem

We're finally ready to state Lagrange's Theorem, which is named after the Italian born mathematician Joseph Louis Lagrange. It turns out that Lagrange did not actually prove the theorem that is named after him. The theorem was actually proved by Carl Friedrich Gauss in 1801.

Theorem 5.16 (Lagrange's Theorem). Let G be a finite group and let $H \leq G$. Then $|H|$ divides $|G|$.

This simple sounding theorem is extremely powerful. One consequence is that groups and subgroups have a fairly rigid structure. Suppose G is a finite group and let $H \leq G$. Since G is finite, there must be a finite number of distinct left cosets, say $H, a_{2} H, \ldots, a_{n} H$. Corollary 5.13 tells us that each of these cosets is the same size. In particular, Lagrange's Theorem implies that for each $i \in\{1, \ldots, n\},\left|a_{i} H\right|=|G| / n$, or equivalently $n=|G| /\left|a_{i} H\right|$. This is depicted in Figure 5.2, where each rectangle represents a coset and we've labeled a single coset representative in each case.

Figure 5.2
One important consequence of Lagrange's Theorem is that it narrows down the possible sizes for subgroups.

Problem 5.17. Suppose G is a group of order 48. What are the possible orders for subgroups of G ?

Lagrange's Theorem tells us what the possible orders of a subgroup are, but if k is a divisor of the order of a group, it does not guarantee that there is a subgroup of order k. It's not too hard to show that the converse of Lagrange's Theorem is true for cyclic groups. However, it's not true, in general.

Problem 5.18. Provide an example of a finite group G such that $|G|$ has a divisor k but G does not have a subgroup of order k.

Using Lagrange's Theorem, we can quickly prove both of the following theorems.
Theorem 5.19. Let G be a finite group and let $a \in G$. Then $|a|$ divides $|G|$.
The next exercise shows us that the converse of Theorem 5.19 is not true.
Problem 5.20. Argue that S_{4} does not have any elements of order 8.

Theorem 5.21. For every prime p, if G has order p, then $G \cong \mathbb{Z}_{p}$.
Corollary 5.22. For every prime p, there is a unique group of order p up to isomorphism.
Lagrange's Theorem motivates the following definition.
Definition 5.23. Let G be a group and let $H \leq G$. The index of H in G is the number of cosets (left or right) of H in G. Equivalently, if G is finite, then the index of H in G is equal to $|G| /|H|$. We denote the index via $[G: H]$.

Problem 5.24. Let $H=\langle(1,2)(3,4),(1,3)(2,4)\rangle$.
(a) Find $\left[A_{4}: H\right]$.
(b) Find $\left[S_{4}: H\right]$.

Problem 5.25. Find $[\mathbb{Z}: 4 \mathbb{Z}]$.

5.3 Normal Subgroups

We've seen an example where the left and right cosets of a subgroup were different and a few examples where they coincided. In the latter case, the subgroup has a special name.

Definition 5.26. Let G be a group and let $H \leq G$. If $a H=H a$ for all $a \in G$, then we say that H is a normal subgroup. If H is a normal subgroup of G, then we write $H \unlhd G$.

Problem 5.27. Provide an example of group that has a subgroup that is not normal.
Problem 5.28. Suppose G is a finite group and let $H \leq G$. If $H \unlhd G$ and we arrange the rows and columns of the group table for G according to the left cosets of H and then color the corresponding cosets, what property will the table have? Is the converse true? That is, if the table has the property you discovered, will H be normal in G ?

There are a few instances where we can guarantee that a subgroup will be normal.
Theorem 5.29. Suppose G is a group. Then $\{e\} \unlhd G$ and $G \unlhd G$.
Theorem 5.30. If G is an abelian group, then all subgroups of G are normal.
A group does not have to be abelian in order for all the proper subgroups to be normal.
Problem 5.31. Argue that all of the proper subgroups of Q_{8} are normal in Q_{8}.
Theorem 5.32. Suppose G is a group and let $H \leq G$ such that $[G: H]=2$. Then $H \unlhd G$.
It turns out that normality is not transitive.
Problem 5.33. Consider $\langle s\rangle=\{e, s\}$ and $\left\langle r^{2}, s r^{2}\right\rangle=\left\{e, r^{2}, s r^{2}, s\right\}$. It is clear that

$$
\langle s\rangle \leq\left\langle r^{2}, s r^{2}\right\rangle \leq D_{4} .
$$

Show that $\langle s\rangle \unlhd\left\langle r^{2}, s r^{2}\right\rangle$ and $\left\langle r^{2}, s r^{2}\right\rangle \unlhd D_{4}$, but $\langle s\rangle \nsubseteq D_{4}$.

The previous problem illustrates that $H \unlhd K \unlhd G$ does not imply $H \unlhd G$.
Definition 5.34. Suppose G is a group and let $H \leq G$. For $g \in G$, we define the conjugate of H by g to be the set

$$
g H g^{-1}:=\left\{g h g^{-1} \mid h \in H\right\} .
$$

Theorem 5.35. Suppose G is a group and let $H \leq G$. Then $H \unlhd G$ if and only if $g H g^{-1} \subseteq H$ for all $g \in G$.

Another way of thinking about normal subgroups is that they are "closed under conjugation." It's not too hard to show that if $g H g^{-1} \subseteq H$ for all $g \in G$, then we actually have $g H g^{-1}=H$ for all $g \in G$. This implies that $H \unlhd G$ if and only if $g H g^{-1}=H$ for all $g \in G$. This seemingly stronger version of Theorem 5.35 is sometimes used as the definition of normal subgroup. This discussion motivates the following definition.

Definition 5.36. Let G be a group and let $H \leq G$. The normalizer of H in G is defined via

$$
N_{G}(H):=\left\{g \in G \mid g H g^{-1}=H\right\} .
$$

Theorem 5.37. If G is a group and $H \leq G$, then $N_{G}(H)$ is a subgroup of G.
Theorem 5.38. If G is a group and $H \leq G$, then $H \unlhd N_{G}(H)$. Moreover, $N_{G}(H)$ is the largest subgroup of G in which H is normal.

It is worth pointing out that the "smallest" $N_{G}(H)$ can be is H itself-certainly a subgroup is a normal subgroup of itself. Also, the "largest" that $N_{G}(H)$ can be is G, which happens precisely when H is normal in G.

Problem 5.39. Find $N_{D_{4}}\left(V_{4}\right)$.
Problem 5.40. Find $N_{D_{3}}(\langle s\rangle)$.
We conclude this chapter with a few remarks. We've seen examples of groups that have subgroups that are normal and subgroups that are not normal. In an abelian group, all the subgroups are normal. It turns out that there are examples of groups that have no normal subgroups. These groups are called simple groups. The smallest simple group is A_{5}, which has 60 elements and lots of proper nontrivial subgroups, none of which are normal.

The classification of the finite simple groups is a theorem stating that every finite simple group belongs to one of four categories:

1. A cyclic group with prime order;
2. An alternating group of degree at least 5;
3. A simple group of Lie type, including both
(a) the classical Lie groups, namely the simple groups related to the projective special linear, unitary, symplectic, or orthogonal transformations over a finite field;
(b) the exceptional and twisted groups of Lie type (including the Tits group);
4. The 26 sporadic simple groups.

These groups can be seen as the basic building blocks of all finite groups, in a way reminiscent of the way the prime numbers are the basic building blocks of the natural numbers.

The classification theorem has applications in many branches of mathematics, as questions about the structure of finite groups (and their action on other mathematical objects) can sometimes be reduced to questions about finite simple groups. Thanks to the classification theorem, such questions can sometimes be answered by checking each family of simple groups and each sporadic group. The proof of the theorem consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004.

The classification of the finite simple groups is a modern achievement in abstract algebra and I highly encourage you to go learn more about it. You might be especially interested in learning about one of the sporadic groups called the Monster Group.

Chapter 6

Products and Quotients of Groups

6.1 Products of Groups

In this section, we will discuss a method for using existing groups as building blocks to form new groups.

Suppose $(G, *)$ and (H, \odot) are two groups. Recall that the Cartesian product of G and H is defined to be

$$
G \times H=\{(g, h) \mid g \in G, h \in H\}
$$

Using the binary operations for the groups G and H, we can define a binary operation on the set $G \times H$. Define \star on $G \times H$ via

$$
\left(g_{1}, h_{1}\right) \star\left(g_{2}, h_{2}\right)=\left(g_{1} * g_{2}, h_{1} \odot h_{2}\right)
$$

This looks fancier than it is. We're just doing the operation of each group in the appropriate component. It turns out that $(G \times H, \star)$ is a group.

Theorem 6.1. Suppose $(G, *)$ and (H, \odot) are two groups, where e and e^{\prime} are the identity elements of G and H, respectively. Then $(G \times H, \star)$ is a group, where \star is defined as above. Moreover, (e, e') is the identity of $G \times H$ and the inverse of $(g, h) \in G \times H$ is given by $(g, h)^{-1}=\left(g^{-1}, h^{-1}\right)$.

We refer to $G \times H$ as the direct product of the groups G and H. In this case, each of G and H is called a factor of the direct product. We often abbreviate $\left(g_{1}, h_{1}\right) \star\left(g_{2}, h_{2}\right)=$ $\left(g_{1} * g_{2}, h_{1} \odot h_{2}\right)$ by $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} h_{2}\right)$. One exception to this is if we are using the operation of addition in each component. For example, consider $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ under the operation of addition $\bmod 4$ in the first component and addition $\bmod 2$ in the second component. Then

$$
\mathbb{Z}_{4} \times \mathbb{Z}_{2}=\{(0,0),(1,0),(2,0),(3,0),(0,1),(1,1),(2,1),(3,1)\} .
$$

In this case, we will use additive notation in $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$. For example, in $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ we have

$$
(2,1)+(3,1)=(1,0)
$$

and

$$
(1,0)+(2,1)=(3,1) .
$$

Moreover, the identity of the group is $(0,0)$. As an example, the inverse of $(1,1)$ is $(3,1)$ since $(1,1)+(3,1)=(0,0)$. There is a very natural generating set for $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$, namely, $\{(1,0),(0,1)\}$ since $1 \in \mathbb{Z}_{4}$ and $1 \in \mathbb{Z}_{2}$ generate \mathbb{Z}_{4} and \mathbb{Z}_{2}, respectively. The corresponding Cayley diagram is given in Figure 6.1.

Figure 6.1. Cayley diagram for $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ with generating set $\{(1,0),(0,1)\}$.

Problem 6.2. Consider the group $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$. Is this group abelian? Is the group cyclic? Determine whether $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ is isomorphic to any of $D_{4}, Q_{8}, \mathbb{Z}_{8}$, or L_{3}.

The upshot of the previous problem is that there are at least five groups of order 8 up to isomorphism. It turns out that there are exactly five groups of order 8 up to isomorphism. In particular, every group of order 8 is isomorphic to one of the following groups: $\mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, L_{3}, D_{4}$, and Q_{8}. Note that $R_{8} \cong \mathbb{Z}_{8}$ and $\operatorname{Spin}_{1 \times 2} \cong D_{4}$. Three of the isomorphism classes correspond to abelian groups while the other two correspond to non-abelian groups. Unfortunately, we will not develop the tools necessary to prove that this classification is complete.

The next two theorems should not be terribly surprising.
Theorem 6.3. If G_{1} and G_{2} are groups, then $G_{1} \times G_{2} \cong G_{2} \times G_{1}$.
Theorem 6.4. Suppose G_{1} and G_{2} are groups with identities e_{1} and e_{2}, respectively. Then $\left\{e_{1}\right\} \times G_{2} \cong G_{2}$ and $G_{1} \times\left\{e_{2}\right\} \cong G_{1}$.

There's no reason we can't take the direct product of more than two groups. If $A_{1}, A_{2}, \ldots, A_{n}$ is a collection of sets, we define

$$
\prod_{i=1}^{n} A_{i}:=A_{1} \times A_{2} \times \cdots \times A_{n}
$$

Each element of $\prod_{i=1}^{n} A_{i}$ is of the form $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, where $a_{i} \in A_{i}$.

Theorem 6.5. Let $G_{1}, G_{2}, \ldots, G_{n}$ be groups. For $\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \prod_{i=1}^{n} G_{i}$, define

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right) .
$$

Then $\prod_{i=1}^{n} G_{i}$, the direct product of G_{1}, \ldots, G_{n}, is a group under this binary operation.
One way to think about direct products is that we can navigate the product by navigating each factor simultaneously but independently. Computing the order of a group that is a direct product is straightforward.

Theorem 6.6. Let $G_{1}, G_{2}, \ldots, G_{n}$ be finite groups. Then

$$
\left|G_{1} \times G_{2} \times \cdots \times G_{n}\right|=\left|G_{1}\right| \cdot\left|G_{2}\right| \cdots\left|G_{n}\right| .
$$

Theorem 6.7. Let $G_{1}, G_{2}, \ldots, G_{n}$ be groups. Then $\left|G_{1} \times G_{2} \times \cdots \times G_{n}\right|$ is infinite if and only if at least one $\left|G_{i}\right|$ is infinite.

The following theorem should be clear.
Theorem 6.8. Let $G_{1}, G_{2}, \ldots, G_{n}$ be groups. Then $\prod_{i=1}^{n} G_{i}$ is abelian if and only if each G_{i} is abelian.

Let's play with a few more examples.
Problem 6.9. Draw the Cayley diagram for $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ using $\{(1,0),(0,1)\}$ as the generating set. Is $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ an abelian group? Is it cyclic? What familiar group is $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ isomorphic to?

Problem 6.10. Consider $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ under the operation of addition mod 2 in each component. Find a generating set for $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and then create a Cayley diagram for this group. What well-known group is $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ isomorphic to?

Consider the similarities and differences between $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Both groups are abelian by Theorem 6.8, but only the former is cyclic. Here's another exercise.

Problem 6.11. Consider the group $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Find a generating set for $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and then create a Cayley diagram for this group. Is there a group that we have seen before that $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ isomorphic to?

The next theorem tells us how to compute the order of an element in a direct product of groups.

Theorem 6.12. Suppose $G_{1}, G_{2}, \ldots, G_{n}$ are groups and let $\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in \prod_{i=1}^{n} G_{i}$. If $\left|g_{i}\right|=$ $r_{i}<\infty$, then $\left|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right|=\operatorname{lcm}\left(r_{1}, r_{2}, \ldots, r_{n}\right)$.

Problem 6.13. Find the order of each of the following elements.
(a) $(6,5) \in \mathbb{Z}_{12} \times \mathbb{Z}_{7}$.
(b) $(r, i) \in D_{3} \times Q_{8}$.
(c) $((1,2)(3,4), 3) \in S_{4} \times \mathbb{Z}_{15}$.

Problem 6.14. Find the largest possible order of elements in each of the following groups.
(a) $\mathbb{Z}_{6} \times \mathbb{Z}_{8}$
(b) $\mathbb{Z}_{9} \times \mathbb{Z}_{12}$
(c) $\mathbb{Z}_{4} \times \mathbb{Z}_{18} \times \mathbb{Z}_{15}$

Theorem 6.15. The group $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is cyclic if and only if m and n are relatively prime.
Corollary 6.16. The group $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is isomorphic to $\mathbb{Z}_{m n}$ if and only if m and n are relatively prime.

The previous results can be extended to more than two factors.
Theorem 6.17. The group $\prod_{i=1}^{n} \mathbb{Z}_{m_{i}}$ is cyclic and isomorphic to $\mathbb{Z}_{m_{1} m_{2} \cdots m_{n}}$ if and only if every pair from the collection $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ is relatively prime.

Problem 6.18. Determine whether each of the following groups is cyclic.
(a) $\mathbb{Z}_{7} \times \mathbb{Z}_{8}$
(b) $\mathbb{Z}_{7} \times \mathbb{Z}_{7}$
(c) $\mathbb{Z}_{2} \times \mathbb{Z}_{7} \times \mathbb{Z}_{8}$
(d) $\mathbb{Z}_{5} \times \mathbb{Z}_{7} \times \mathbb{Z}_{8}$

Theorem 6.19. Suppose $n=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{r}^{n_{r}}$, where each p_{i} is a distinct prime number. Then

$$
\mathbb{Z}_{n} \cong \mathbb{Z}_{p_{1}^{n_{1}}} \times \mathbb{Z}_{p_{2}^{n_{2}}} \times \cdots \times \mathbb{Z}_{p_{r}^{n_{r}}}
$$

Theorem 6.20. Suppose G and H are two groups. Then $G \times H \cong H \times G$.
Theorem 6.21. Suppose G_{1} and G_{2} are groups such that $H_{1} \leq G_{1}$ and $H_{2} \leq G_{2}$. Then $H_{1} \times H_{2} \leq G_{1} \times G_{2}$.

However, not every subgroup of a direct product has the form above.
Problem 6.22. Find an example that illustrates that not every subgroup of a direct product is the direct product of subgroups of the factors.

Problem 6.23. Can we extend Theorem 6.21 to normal subgroups? That is, if $H_{1} \unlhd G_{1}$ and $H_{2} \unlhd G_{2}$, is it the case that $H_{1} \times H_{2} \unlhd G_{1} \times G_{2}$? If so, prove it. Otherwise, provide a counterexample.

The next theorem describes precisely the structure of finite abelian groups. We will omit its proof, but allow ourselves to utilize it as needed.

Theorem 6.24 (Fundamental Theorem of Finitely Generated Abelian Groups). Every finitely generated abelian group G is isomorphic to a direct product of cyclic groups of the form

$$
\mathbb{Z}_{p_{1}^{n_{1}}} \times \mathbb{Z}_{p_{2}^{n_{2}}} \times \cdots \times \mathbb{Z}_{p_{r}^{n_{r}}} \times \mathbb{Z}^{k}
$$

where each p_{i} is a prime number (not necessarily distinct). The product is unique up to rearrangement of the factors.

Note that the number k is called the Betti number. A finitely generated abelian group is finite if and only if the Betti number is 0 .

Problem 6.25. Find all abelian groups up to isomorphism of order 8. How many different groups up to isomorphism (both abelian and non-abelian) have we seen and what are they?

Problem 6.26. Find all abelian groups up to isomorphism for each of the following orders.
(a) 16
(b) 12
(c) 25
(d) 30
(e) 60

6.2 Quotients of Groups

In the previous section, we discussed a method for constructing "larger" groups from "smaller" groups using a direct product construction. In this section, we will in some sense do the opposite.

Problem 5.28 hinted that if $H \leq G$ and we arrange the group table according to the left cosets of H, then the group table will have checkerboard pattern if and only if H is normal in G (i.e., the left and right cosets of H are the same). For example, see the colored table prior to Problem 5.3 versus the ones you created in Exercises 5.3, 5.4. If we have the checkerboard pattern in the group table that arises from a normal subgroup, then by "gluing together" the colored blocks, we obtain a group table for a smaller group that has the cosets as the elements.

For example, let's consider $K=\langle-1\rangle \leq Q_{8}$. Problem 5.4 showed us that K is normal Q_{8}. The left (and right) cosets of K in Q_{8} are

$$
K=\{1,-1\}, i K=\{i,-i\}, j K=\{j,-j\} \text {, and } k K=\{k,-k\} .
$$

As you found in Problem 5.4, if we arrange the rows and columns of Q_{8} according to these cosets, we obtain the following group table.

If we consider the 2×2 blocks as elements, it appears that we have a group table for a group with 4 elements. Closer inspection reveals that this looks like the table for V_{4}. If the table of 2×2 blocks is going to represent a group, we need to understand the binary operation. How do we "multiply" cosets? For example, the table suggest that the coset $j K$ (colored in red) times the coset $i K$ (colored in blue) is equal to $k K$ (colored in purple) despite the fact that $j i=-k \neq k$. Yet, it is true that the product $j i=-k$ is an element in the coset $k K$. In fact, if we look closely at the table, we see that if we pick any two cosets, the product of any element of the first coset times any element of the second coset will always result in an element in the same coset regardless of which representatives we chose.

In other words, it looks like we can multiply cosets by choosing any representative from each coset and then seeing what coset the product of the representatives lies in. However, it is important to point out that this will only work if we have a checkerboard pattern of cosets, which we have seen evidence of only happening when the corresponding subgroup is normal.

Before continuing, let's continue tinkering with the same example. Consider the Cayley diagram for Q_{8} with generators $\{i, j,-1\}$ that is given in Figure 6.2(a).

(a)

(b)

Figure 6.2. The left subfigure shows the Cayley diagram for Q_{8} with generating set $\{i, j,-1\}$. The right subfigure shows the collapsed Cayley diagram for Q_{8} according to the left cosets of $K=\langle-1\rangle$.

We can visualize the right cosets of K as the clumps of vertices connected together with the two-way green arrows. In this case, we are also seeing the left cosets since K is
normal in Q_{8}. If we collapse the cosets onto each other and collapse the corresponding arrows, we obtain the diagram given in Figure 6.2(b). It is clear that this diagram is the Cayley diagram for a group that is isomorphic to V_{4}. For reasons we will understand shortly, this processing of collapsing a Cayley diagram according to the cosets of a normal subgroup is called the "quotient process."

Problem 6.27. Let's see what happens if we attempt the quotient process for a subgroup that is not normal. Consider $H=\langle s\rangle \leq D_{3}$. In Problem 5.2, we discovered that the left cosets of H are not the same as the right cosets of H. This implies that H is not normal in D_{3}. Consider the standard Cayley diagram for D_{3} that uses the generators r and s. Draw the diagram that results from attempting the quotient process on D_{3} using the subgroup H. Explain why this diagram cannot be the diagram for a group.

The problem that arises in Problem 6.27 is that if the same arrow types (i.e., those representing the same generator) leaving a coset do not point at elements in the same coset, attempting the quotient process will result in a diagram that cannot be a Cayley diagram for a group since we have more than one arrow of the same type leaving a vertex. In Figure 6.3(a), we illustrate what goes wrong if all the arrows for a generator pointing out of a coset do not unanimously point to elements in the same coset. In Figure 6.3(b), all the arrows point to elements in the same coset, and in this case, it appears that everything works out just fine.

Figure 6.3. In the left subfigure, blue arrows go from elements of the left coset $g_{1} H$ to elements of multiple left cosets, which results in ambiguous blue arrows in the collapsed diagram. This implies that left coset multiplication is not well-defined in this case. In the right subfigure, blue arrows go from elements of the left coset $g_{1} H$ to elements inside a unique left coset, which does not result in any ambiguity.

Problem 6.28. In Problem 5.3, we learned that the subgroup $K=\langle r\rangle$ is normal in D_{3} since the left cosets are equal to the right cosets. Note that this follows immediately from Theorem 5.32 since $\left[D_{3}: K\right]=2$. Draw the diagram that results from performing the quotient process to D_{3} using the subgroup K. Does the resulting diagram represent a group? If so, what group is it isomorphic to?

Now, suppose G is an arbitrary group and let $H \leq G$. Consider the set of left cosets of H. We define

$$
(a H)(b H):=(a b) H .
$$

The natural question to ask is whether this operation is well-defined. That is, does the result of multiplying two left cosets depend on our choice of representatives? More specifically, suppose $c \in a H$ and $d \in b H$. Then $c H=a H$ and $d H=b H$. According to the operation defined above, $(c H)(d H)=c d H$. It better be the case that $c d H=a b H$, otherwise the operation is not well-defined.

Problem 6.29. Let $H=\langle s\rangle \leq D_{3}$. Find specific examples of $a, b, c, d \in D_{3}$ such that

$$
(a H)(b H) \neq(c H)(d H)
$$

even though $a H=c H$ and $b H=d H$.
Theorem 6.30. Let G be a group and let $H \leq G$. Then left coset multiplication (as defined above) is well-defined if and only if $H \unlhd G$.

Theorem 6.31. Let G be a group and let $H \unlhd G$. Then the set of left cosets of H in G forms a group under left coset multiplication.

The group from Theorem 6.31 is denoted by G / H, read " $G \bmod H$ ", and is referred to as the quotient group (or factor group) of G by H. If G is a finite group, then G / H is exactly the group that arises from "gluing together" the colored blocks in a checkerboardpatterned group table. It's also the group that we get after applying the quotient process to the Cayley diagram. It's important to point out once more that this only works properly if H is a normal subgroup.

Recall that Theorem 5.30 tells us that if G is abelian, then every subgroup is normal. This implies that when G is abelian, G / H is a well-defined group for every subgroup H of G. However, it is not necessary for G to be abelian in order for G / H to be a well-defined group. The quotient group $Q_{8} /\langle-1\rangle$ is an example where this happens.

The next theorem tells us how to compute the order of a quotient group.
Theorem 6.32. Let G be a group and let $H \unlhd G$. Then $|G / H|=[G: H]$. In particular, if G is finite, then $|G / H|=|G| /|H|$.

It's important to point out that the order of a quotient group might be finite even if G has infinite order.

Problem 6.33. Consider the group $(\mathbb{Z},+)$. Since \mathbb{Z} is abelian, every subgroup is normal. For example, $4 \mathbb{Z} \unlhd \mathbb{Z}$, which implies that $\mathbb{Z} / 4 \mathbb{Z}$ is a well-defined quotient group. Moreover, both \mathbb{Z} and $4 \mathbb{Z}$ have infinite order. What is $|\mathbb{Z} / 4 \mathbb{Z}|$ equal to? Can you determine what well-known group $\mathbb{Z} / 4 \mathbb{Z}$ is isomorphic to?

Suppose G is a group and $H \unlhd G$, so that G / H is a group. Recall that the elements of the group G / H are the left cosets of H, which are of the form $a H$ where $a \in G$. The operation of the group is defined via

$$
(a H)(b H)=a b H .
$$

Moreover, the identity in G / H is $e H=H$ since $(a H)(e H)=a H$. By Corollary $4.20|a H|=k$ if and only $(a H)^{k}=H$ and k is the smallest such positive exponent with this property. But
notice that $(a H)^{k}=a^{k} H$. So, in order to compute the order of $a H$, we need to find the smallest positive exponent k such that $a^{k} H=H$, but $a^{k} H=H$ exactly when a^{k} is in H. The upshot is that to find the order of $a H$ in G / H, we need the smallest positive k such that a^{k} is in H.

Problem 6.34. Find the order of the given element in the quotient group. You may assume that we are taking the quotient by a normal subgroup.
(a) $s\langle r\rangle \in D_{4} /\langle r\rangle$
(b) $j\langle-1\rangle \in Q_{8} /\langle-1\rangle$
(c) $5+\langle 4\rangle \in \mathbb{Z}_{12} /\langle 4\rangle$
(d) $(2,1)+\langle(1,1)\rangle \in\left(\mathbb{Z}_{3} \times \mathbb{Z}_{6}\right) /\langle(1,1)\rangle$
(e) $(1,3)+\langle(0,2)\rangle \in\left(\mathbb{Z}_{4} \times \mathbb{Z}_{8}\right) /\langle(0,2)\rangle$

Problem 6.35. For each quotient group below, describe the group. If possible, state what group each is isomorphic to. You may assume that we are taking the quotient by a normal subgroup.
(a) $Q_{8} /\langle-1\rangle$
(b) $Q_{8} /\langle i\rangle$
(c) $\mathbb{Z}_{4} /\langle 2\rangle$
(d) $V_{4} /\langle h\rangle$
(e) $A_{4} /\langle(1,2)(3,4),(1,3)(2,4)\rangle$
(f) $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) /\langle(1,1)\rangle$
(g) $\mathbb{Z} / 4 \mathbb{Z}$
(h) S_{4} / A_{4}
(i) $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) /\left(\{0\} \times \mathbb{Z}_{2}\right)$

Problem 6.36. Compute the order of every element in the quotient group $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right) /\langle(0,2)\rangle$. What well-known group is $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right) /\langle(0,2)\rangle$ isomorphic to?

Theorem 6.37. Let G be a group. Then
(a) $G /\{e\} \cong G$
(b) $G / G \cong\{e\}$

Theorem 6.38. For all $n \in \mathbb{N}$, we have the following.
(a) $S_{n} / A_{n} \cong \mathbb{Z}_{2}($ for $n \geq 3)$
(b) $\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z}_{n}$
(c) $\mathbb{R} / n \mathbb{R} \cong\{e\}$

Theorem 6.39. Let G be a group and let $H \unlhd G$. If G is abelian, then so is G / H.
Problem 6.40. Show that the converse of the previous theorem is not true by providing a specific counterexample.

Problem 6.41. Consider the quotient group $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{6}\right) /\langle(0,1)\rangle$.
(a) What is the order of $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{6}\right) /\langle(0,1)\rangle$?
(b) Is the group abelian? Why?
(c) Write down all the elements of $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{6}\right) /\langle(0,1)\rangle$.
(d) Does one of the elements generate the group?
(e) What well-known group is $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{6}\right) /\langle(0,1)\rangle$ isomorphic to?

Theorem 6.42. Let G be a group and let $H \unlhd G$. If G is cyclic, then so is G / H.
Problem 6.43. Show that the converse of the previous theorem is not true by providing a specific counterexample.

Here are few additional exercises. These ones are a bit tougher.
Problem 6.44. For each quotient group below, describe the group. If possible, state what group each is isomorphic to. You may assume that we are taking the quotient by a normal subgroup.
(a) $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{6}\right) /\langle(0,2)\rangle$
(b) $(\mathbb{Z} \times \mathbb{Z}) /\langle(1,1)\rangle$
(c) $\mathbb{Q} /\langle 1\rangle$ (the operation on \mathbb{Q} is addition)

Chapter 7

Homomorphisms and the Isomorphism Theorems

7.1 Homomorphisms

Let G_{1} and G_{2} be groups. Recall that $\phi: G_{1} \rightarrow G_{2}$ is an isomorphism if and only if ϕ
(a) is one-to-one,
(b) is onto, and
(c) satisfies the homomorphic property.

We say that G_{1} is isomorphic to G_{2} and write $G_{1} \cong G_{2}$ if such a ϕ exists. Loosely speaking, two groups are isomorphic if they have the "same structure." What if we drop the one-toone and onto requirement?

Definition 7.1. Let $\left(G_{1}, *\right)$ and $\left(G_{2}, \odot\right)$ be groups. A function $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism if and only if ϕ satisfies the homomorphic property:

$$
\phi(x * y)=\phi(x) \odot \phi(y)
$$

for all $x, y \in G_{1}$. At the risk of introducing ambiguity, we will usually omit making explicit reference to the binary operations and write the homomorphic property as

$$
\phi(x y)=\phi(x) \phi(y) .
$$

Group homomorphisms are analogous to linear transformations on vector spaces that one encounters in linear algebra.

Figure 7.1 captures a visual representation of the homomorphic property. We encountered this same representation in Figure 3.9. If $\phi(x)=x^{\prime}, \phi(y)=y^{\prime}$, and $\phi(z)=z^{\prime}$ while $z^{\prime}=x^{\prime} \odot y^{\prime}$, then the only way G_{2} may respect the structure of G_{1} is for

$$
\phi(x * y)=\phi(z)=z^{\prime}=x^{\prime} \odot y^{\prime}=\phi(x) \odot \phi(y) .
$$

Figure 7.1

Problem 7.2. Define $\phi: \mathbb{Z}_{3} \rightarrow D_{3}$ via $\phi(k)=r^{k}$. Prove that ϕ is a homomorphism and then determine whether ϕ is one-to-one or onto. Also, try to draw a picture of the homomorphism in terms of Cayley diagrams.

Problem 7.3. Let G and H be groups. Prove that the function $\phi: G \times H \rightarrow G$ given by $\phi(g, h)=g$ is a homomorphism. This function is an example of a projection map.

There is always at least one homomorphism between two groups.
Theorem 7.4. Let G_{1} and G_{2} be groups. Define $\phi: G_{1} \rightarrow G_{2}$ via $\phi(g)=e_{2}$ (where e_{2} is the identity of G_{2}). Then ϕ is a homomorphism. This function is often referred to as the trivial homomorphism or the 0-map.

Back in Section 3.3, we encountered several theorems about isomorphisms. However, at the end of that section we remarked that some of those theorems did not require that the function be one-to-one and onto. We collect those results here for convenience.

Theorem 7.5. Let G_{1} and G_{2} be groups and suppose $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism.
(a) If e_{1} and e_{2} are the identity elements of G_{1} and G_{2}, respectively, then $\phi\left(e_{1}\right)=e_{2}$.
(b) For all $g \in G_{1}$, we have $\phi\left(g^{-1}\right)=[\phi(g)]^{-1}$.
(c) If $H \leq G_{1}$, then $\phi(H) \leq G_{2}$, where

$$
\phi(H):=\left\{y \in G_{2} \mid \text { there exists } h \in H \text { such that } \phi(h)=y\right\} .
$$

Note that $\phi(H)$ is called the image of H. A special case is when $H=G_{1}$. Notice that ϕ is onto exactly when $\phi\left(G_{1}\right)=G_{2}$.

The following theorem is a consequence of Lagrange's Theorem.
Theorem 7.6. Let G_{1} and G_{2} be groups such that G_{2} is finite and let $H \leq G_{1}$. If $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism, then $|\phi(H)|$ divides $\left|G_{2}\right|$.

The next theorem tells us that under a homomorphism, the order of the image of an element must divide the order of the pre-image of that element.

Theorem 7.7. Let G_{1} and G_{2} be groups and suppose $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism. If $g \in G_{1}$ such that $|g|$ is finite, then $|\phi(g)|$ divides $|g|$.

Every homomorphism has an important subset of the domain associated with it.
Definition 7.8. Let G_{1} and G_{2} be groups and suppose $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism. The kernel of ϕ is defined via

$$
\operatorname{ker}(\phi):=\left\{g \in G_{1} \mid \phi(g)=e_{2}\right\} .
$$

The kernel of a homomorphism is analogous to the null space of a linear transformation of vector spaces.

Problem 7.9. Identify the kernel and image for the homomorphism given in Problem 7.2.
Problem 7.10. What is the kernel of a trivial homomorphism (see Theorem 7.4).
Theorem 7.11. Let G_{1} and G_{2} be groups and suppose $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism. Then $\operatorname{ker}(\phi) \unlhd G_{1}$.

Theorem 7.12. Let G be a group and let $H \unlhd G$. Then the map $\gamma: G \rightarrow G / H$ given by $\gamma(g)=g H$ is a homomorphism with $\operatorname{ker}(\gamma)=H$. This map is called the canonical projection map.

The upshot of Theorems 7.11 and 7.12 is that kernels of homomorphisms are always normal and every normal subgroup is the kernel of some homomorphism. It turns out that the kernel can tell us whether ϕ is one-to-one.

The next theorem tells us that two elements in the domain of a group homomorphism map to the same element in the codomain if and only if they are in the same coset of the kernel.

Theorem 7.13. Let G_{1} and G_{2} be groups and suppose $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism. Then $\phi(a)=\phi(b)$ if and only if $a \in b \operatorname{ker}(\phi)$.

One consequence of Theorem 7.13 is that if the kernel of a homomorphism has order k, then the homomorphism is k-to- 1 . That is, every element in the range has exactly k elements from the domain that map to it. In particular, each of these collections of k elements corresponds to a coset of the kernel.

Problem 7.14. Suppose $\phi: \mathbb{Z}_{20} \rightarrow \mathbb{Z}_{20}$ is a group homomorphism such that $\operatorname{ker}(\phi)=$ $\{0,5,10,15\}$. If $\phi(13)=8$, determine all elements that ϕ maps to 8 .

The next result is a special case of Theorem 7.13.
Theorem 7.15. Let G_{1} and G_{2} be groups and suppose $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism. Then ϕ is one-to-one if and only if $\operatorname{ker}(\phi)=\left\{e_{1}\right\}$, where e_{1} is the identity in G_{1}.

Let G_{1} and G_{2} be groups and suppose $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism. Given a generating set for G_{1}, the homomorphism ϕ is uniquely determined by its action on the generating set for G_{1}. In particular, if you have a word for a group element written in terms of the generators, just apply the homomorphic property to the word to find the image of the corresponding group element.

Problem 7.16. Suppose $\phi: Q_{8} \rightarrow V_{4}$ is a group homomorphism satisfying $\phi(i)=h$ and $\phi(j)=v$.
(a) Find $\phi(1), \phi(-1), \phi(k), \phi(-i), \phi(-j)$, and $\phi(-k)$.
(b) Find $\operatorname{ker}(\phi)$.
(c) What well-known group is $Q_{8} / \operatorname{ker}(\phi)$ isomorphic to?

Problem 7.17. Find a non-trivial homomorphism from \mathbb{Z}_{10} to \mathbb{Z}_{6}.
Problem 7.18. Find all non-trivial homomorphisms from \mathbb{Z}_{3} to \mathbb{Z}_{6}.
Problem 7.19. Prove that the only homomorphism from D_{3} to \mathbb{Z}_{3} is the trivial homomorphism.

Problem 7.20. Let F be the set of all functions from \mathbb{R} to \mathbb{R} and let D be the subset of differentiable functions on \mathbb{R}. It turns out that F is a group under addition of functions and D is a subgroup of F (you do not need to prove this). Define $\phi: D \rightarrow F$ via $\phi(f)=f^{\prime}$ (where f^{\prime} is the derivative of f). Prove that ϕ is a homomorphism. You may recall facts from calculus without proving them. Is ϕ one-to-one? Onto?

7.2 The Isomorphism Theorems

The next theorem is arguably the crowning achievement of the course.
Theorem 7.21 (The First Isomorphism Theorem). Let G_{1} and G_{2} be groups and suppose $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism. Then

$$
G_{1} / \operatorname{ker}(\phi) \cong \phi\left(G_{1}\right) .
$$

If ϕ is onto, then

$$
G_{1} / \operatorname{ker}(\phi) \cong G_{2} .
$$

Problem 7.22. Let $\phi: Q_{8} \rightarrow V_{4}$ be the homomorphism described in Problem 7.16. Use the First Isomorphism Theorem to prove that $Q_{8} /\langle-1\rangle \cong V_{4}$.

Problem 7.23. Define $\phi: S_{n} \rightarrow \mathbb{Z}_{2}$ via

$$
\phi(\sigma)= \begin{cases}0, & \sigma \text { even } \\ 1, & \sigma \text { odd }\end{cases}
$$

Use the First Isomorphism Theorem to prove that $S_{n} / A_{n} \cong \mathbb{Z}_{2}$.
Problem 7.24. Use the First Isomorphism Theorem to prove that $\mathbb{Z} / 6 \mathbb{Z} \cong \mathbb{Z}_{6}$. Attempt to draw a picture of this using Cayley diagrams.

Problem 7.25. Use the First Isomorphism Theorem to prove that $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) /\left(\{0\} \times \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{4}$.

The next theorem is a generalization of Theorem 7.7 and follows from the First Isomorphism Theorem together with Lagrange's Theorem.

Theorem 7.26. Let G_{1} and G_{2} be groups and suppose $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism. If G_{1} is finite, then $\left|\phi\left(G_{1}\right)\right|$ divides $\left|G_{1}\right|$.

We finish the chapter by listing a few of the remaining isomorphism theorems.
Theorem 7.27 (The Second Isomorphism Theorem). Let G be a group with $H \leq G$ and $N \unlhd G$. Then
(a) $H N:=\{h n \mid h \in H, n \in N\} \leq G$;
(b) $H \cap N \unlhd H$;
(c) $H /(H \cap N) \cong H N / N$.

Theorem 7.28 (The Third Isomorphism Theorem). Let G be a group with $H, K \unlhd G$ and $K \leq H$. Then $H / K \unlhd G / K$ and

$$
G / H \cong(G / K) /(H / K)
$$

The last isomorphism theorem is sometimes called the Lattice Isomorphism Theorem or the Correspondence Theorem.

Theorem 7.29 (The Fourth Isomorphism Theorem). Let G be a group with $N \unlhd G$. Then there is a bijection from the set of subgroups of G that contain N onto the set of subgroups of G / N. In particular, every subgroup G is of the form H / N for some subgroup H of G containing N (namely, its pre-image in G under the canonical projection homomorphism from G to G / N.) This bijection has the following properties: for all $H, K \subseteq G$ with $N \subseteq H$ and $N \subseteq K$, we have
(a) $H \subset K$ if and only if $H / N \subset K / N$
(b) If $H \subset K$, then $|K: H|=|K / N: H / N|$
(c) $\langle H, K\rangle / N=\langle H / N, K / N\rangle$
(d) $(H \cap K) / N=H / N \cap K / N$
(e) $H \unlhd G$ if and only if $H / N \unlhd G / N$.

Chapter 8

An Introduction to Rings

8.1 Definitions and Examples

Recall that a group is a set together with a single binary operation, which together satisfy a few modest properties. Loosely speaking, a ring is a set together with two binary operations (called addition and multiplication) that are related via a distributive property.

Definition 8.1. A ring R is a set together with two binary operations + and \cdot (called addition and multiplication, respectively) satisfying the following:
(i) $(R,+)$ is an abelian group.
(ii) - is associative: $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for all $a, b, c \in R$.
(iii) The distributive property holds: $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$ and $(a+b) \cdot c=(a \cdot c)+(b \cdot c)$ for all $a, b, c \in R$.

Remark 8.2. We make a couple comments about notation.
(a) We often write $a b$ in place of $a \cdot b$.
(b) The additive inverse of the ring element $a \in R$ is denoted $-a$.

Theorem 8.3. If R is a ring, then for all $a, b \in R$:
(a) $0 a=a 0=0$
(b) $(-a) b=a(-b)=-(a b)$
(c) $(-a)(-b)=a b$

Definition 8.4. A ring R is called commutative if multiplication is commutative.
Definition 8.5. A ring R is said to have an identity (or called a ring with 1) if there is an element $1 \in R$ such that $1 a=a 1=a$ for all $a \in R$.

Problem 8.6. Justify that \mathbb{Z} is a commutative ring with 1 under the usual operations of addition and multiplication. Which elements have multiplicative inverses in \mathbb{Z} ?

Problem 8.7. Justify that \mathbb{Z}_{n} is a commutative ring with 1 under addition and multiplication $\bmod n$.

Problem 8.8. Consider the set $\mathbb{Z}_{10}=\{0,1,2,3,4,5,6,7,8,9\}$. Which elements have multiplicative inverses in \mathbb{Z}_{10} ?

Problem 8.9. For each of the following, find a positive integer n such that the ring \mathbb{Z}_{n} does not have the stated property.
(a) $a^{2}=a$ implies $a=0$ or $a=1$.
(b) $a b=0$ implies $a=0$ or $b=0$.
(c) $a b=a c$ and $a \neq 0$ imply $b=c$.

Theorem 8.10. If R is a ring with 1 , then the multiplicative identity is unique and $-a=$ (-1) a.

Problem 8.11. Requiring $(R,+)$ to be a group is fairly natural, but why require $(R,+)$ to be abelian? Suppose R has a 1 . Compute $(1+1)(a+b)$ in two different ways.

Definition 8.12. A ring R with 1 (with $1 \neq 0$) is called a division ring if every nonzero element in R has a multiplicative inverse: if $a \in R \backslash\{0\}$, then there exists $b \in R$ such that $a b=b a=1$.

Definition 8.13. A commutative division ring is called a field.
Definition 8.14. A nonzero element a in a ring R is called a zero divisor if there is a nonzero element $b \in R$ such that either $a b=0$ or $b a=0$.

Problem 8.15. Are there any zero divisors in \mathbb{Z}_{10} ? If so, find all of them.
Problem 8.16. Are there any zero divisors in \mathbb{Z}_{5} ? If so, find all of them.
Problem 8.17. Provide an example of a ring R and elements $a, b \in R$ such that $a x=b$ has more than one solution. How does this compare with groups?

Theorem 8.18 (Cancellation Law). Assume $a, b, c \in R$ such that a is not a zero divisor. If $a b=a c$, then either $a=0$ or $b=c$.

Definition 8.19. Assume R is a ring with 1 with $1 \neq 0$. An element $u \in R$ is called a unit in R if u has a multiplicative inverse (i.e., there exists $v \in R$ such that $u v=v u=1$). The set of units in R is denoted $U(R)$.

Problem 8.20. Consider the ring \mathbb{Z}_{20}.
(a) Find $U\left(\mathbb{Z}_{20}\right)$.
(b) Find the zero divisors of \mathbb{Z}_{20}.
(c) Any observations?

Theorem 8.21. If $U(R) \neq \emptyset$, then $U(R)$ forms a group under multiplication.
Remark 8.22. We make a few observations.
(a) A field is a commutative ring F with identity $1 \neq 0$ in which every nonzero element is a unit, i.e., $U(F)=F \backslash\{0\}$.
(b) Zero divisors can never be units.
(c) Fields never have zero divisors.

Definition 8.23. A commutative ring with identity $1 \neq 0$ is called an integral domain if it has no zero divisors.
Remark 8.24. The Cancellation Law (Theorem 8.18) holds in integral domains for any three elements.
Theorem 8.25. Any finite integral domain is a field.
Example 8.26. Here are a few examples. Details left as an exercise.
(a) Zero Ring: If $R=\{0\}$, we can turn R into a ring in the obvious way. The zero ring is a finite commutative ring with 1 . It is the only ring where the additive and multiplicative identities are equal. The zero ring is not a division ring, not a field, and not an integral domain.
(b) Trivial Ring: Given any abelian group R, we can turn R into a ring by defining multiplication via $a b=0$ for all $a, b \in R$. Trivial rings are commutative rings in which every nonzero element is a zero divisor. Hence a trivial ring is not a division ring, not a field, and not a integral domain.
(c) The integers form an integral domain, but \mathbb{Z} is not a division ring, and hence not a field.
(d) The rational numbers \mathbb{Q}, the real numbers \mathbb{R}, and the complex numbers \mathbb{C} are fields under the usual operations of addition and multiplication.
(e) The group of units $U\left(\mathbb{Z}_{n}\right)$ is the set of elements in \mathbb{Z}_{n} that are relatively prime to n. That is, $U\left(\mathbb{Z}_{n}\right)=U_{n}$. All other nonzero elements are zero divisors. It turns out that \mathbb{Z}_{n} forms a finite field if and only if n is prime.
(f) The set of even integers $2 \mathbb{Z}$ forms a commutative ring under the usual operations of addition and multiplication. However, $2 \mathbb{Z}$ does not have a 1 , and hence cannot be a division ring nor a field. Moreover, if you look closely at the definition of integral domain, you'll see that $2 \mathbb{Z}$ is also not an integral domain since $2 \mathbb{Z}$ does not contain a multiplicative identity.
(g) Polynomial Ring: Fix a commutative ring R. Let $R[x]$ denote the set of polynomials in the variable x with coefficients in R. Then $R[x]$ is a commutative ring. Moreover, $R[x]$ is a ring with 1 if and only if R is a ring with 1 . The units of $R[x]$ are exactly the units of R (if there are any). So, $R[x]$ is never a division ring nor a field. However, if R is an integral domain, then so is $R[x]$.
(h) Matrix Ring: Fix a ring R and let n be a positive integer. Let $M_{n}(R)$ be the set of $n \times n$ matrices with entries from R. Then $M_{n}(R)$ forms a ring under ordinary matrix addition and multiplication. If R is nontrivial and $n \geq 2$, then $M_{n}(R)$ always has zero divisors and $M_{n}(R)$ is not commutative even if R is. If R has a 1 , then the matrix with 1 's down the diagonal and 0's elsewhere is the multiplicative identity in $M_{n}(R)$. In this case, the group of units is the set of invertible $n \times n$ matrices, denoted $G L_{n}(R)$ and called the general linear group of degree n over R.
(i) Quadratic Field: Define $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$. It turns out that $\mathbb{Q}(\sqrt{2})$ is a field. In fact, we can replace 2 with any rational number that is not a perfect square in \mathbb{Q}.
(j) Hamilton Quaternions: Define $\mathbb{H}=\left\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}, i, j, k \in Q_{8}\right\}$ Then \mathbb{H} forms a ring, where addition is definite componentwise in i, j, and k and multiplication is defined by expanding products and the simplifying using the relations of Q_{8}. It turns out that \mathbb{H} is a non-commutative ring with 1 .

Problem 8.27. Find an example of a ring R and an element $a \in R \backslash\{0\}$ such that a is neither a zero divisor nor a unit.

Definition 8.28. A subring of a ring R is a subgroup of R under addition that is also closed under multiplication.

Remark 8.29. The property "is a subring" is clearly transitive. To show that a subset S of a ring R is a subring, it suffices to show that $S \neq \emptyset, S$ is closed under subtraction, and S is closed under multiplication.

Example 8.30. Here are a few quick examples.
(a) \mathbb{Z} is a subring of \mathbb{Q}, which is a subring of \mathbb{R}, which in turn is a subring of \mathbb{C}.
(b) $2 \mathbb{Z}$ is a subring of \mathbb{Z}.
(c) The set $\mathbb{Z}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$ is a subring of $\mathbb{Q}(\sqrt{2})$.
(d) The ring R is a subring of $R[x]$ if we identify R with set of constant functions.
(e) The set of polynomials with zero constant term in $R[x]$ is a subring of $R[x]$.
(f) $\mathbb{Z}[x]$ is a subring of $\mathbb{Q}[x]$.
(g) \mathbb{Z}_{n} is not a subring of \mathbb{Z} as the operations are different.

Problem 8.31. Consider the ring \mathbb{Z}_{10} from Problem 8.8. Let $S=\{0,2,4,6,8\}$.
(a) Argue that S is a subring of \mathbb{Z}_{10}.
(b) Is S a ring with 1? If so, find the multiplicative identity. If not, explain why.
(c) Is S a field? Justify your answer.

Problem 8.32. Suppose R is a ring and let $a \in R$. Define $S=\{x \in R \mid a x=0\}$. Prove that S is a subring of R.

Problem 8.33. Consider the ring \mathbb{Z}. It turns out that $2 \mathbb{Z}$ and $3 \mathbb{Z}$ are subrings (but you don't need to prove this). Determine whether $2 \mathbb{Z} \cup 3 \mathbb{Z}$ is a subring of \mathbb{Z}. Justify your answer.

8.2 Ring Homomorphisms

Definition 8.34. Let R and S be rings. A ring homomorphism is a map $\phi: R \rightarrow S$ satisfying
(a) $\phi(a+b)=\phi(a)+\phi(b)$
(b) $\phi(a b)=\phi(a) \phi(b)$
for all $a, b \in R$. The kernel of ϕ is defined via $\operatorname{ker}(\phi)=\{a \in R \mid \phi(a)=0\}$. If ϕ is a bijection, then ϕ is called an isomorphism, in which case, we say that R and S are isomorphic rings and write $R \cong S$.

Example 8.35.

(a) For $n \in \mathbb{Z}$, define $\phi_{n}: \mathbb{Z} \rightarrow \mathbb{Z}$ via $\phi_{n}(x)=n x$. We see that $\phi_{n}(x+y)=n(x+y)=$ $n x+n y=\phi_{n}(x)+\phi_{n}(y)$. However, $\phi_{n}(x y)=n(x y)$ while $\phi_{n}(x) \phi_{n}(y)=(n x)(n y)=n^{2} x y$. It follows that ϕ_{n} is a ring homomorphism exactly when $n \in\{0,1\}$.
(b) Define $\phi: \mathbb{Q}[x] \rightarrow \mathbb{Q}$ via $\phi(p(x))=p(0)$ (called evaluation at 0). It turns out that ϕ is a ring homomorphism, where $\operatorname{ker}(\phi)$ is the set of polynomials with 0 constant term.

Problem 8.36. For each of the following, determine whether the given function is a ring homomorphism. Justify your answers.
(a) Define $\phi: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{12}$ via $\phi(x)=3 x$.
(b) Define $\phi: \mathbb{Z}_{10} \rightarrow \mathbb{Z}_{10}$ via $\phi(x)=5 x$.
(c) Let $S=\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}$. Define $\phi: \mathbb{C} \rightarrow S$ via $\phi(a+i b)=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$.
(d) Let $T=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}\right\}$. Define $\phi: T \rightarrow \mathbb{Z}$ via $\phi\left(\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right)=a$.

Theorem 8.37. Let $\phi: R \rightarrow S$ be a ring homomorphism.
(a) $\phi(R)$ is a subring of S.
(b) $\operatorname{ker}(\phi)$ is a subring of R.

Problem 8.38. Suppose $\phi: R \rightarrow S$ is a ring homomorphism such that R is a ring with 1 , call it 1_{R}. Prove that $\phi\left(1_{R}\right)$ is the multiplicative identity in $\phi(R)$ (which is a subring of S). Can you think of an example of a ring homomorphism where S has a multiplicative identity that is not equal to $\phi\left(1_{R}\right)$?

Theorem 8.37(b) states that the kernel of a ring homomorphism is a subring. This is analogous to the kernel of a group homomorphism being a subgroup. However, recall that the kernel of a group homomorphism is also a normal subgroup. Like the situation with groups, we can say something even stronger about the kernel of a ring homomorphism. This will lead us to the notion of an ideal.

Theorem 8.39. Let $\phi: R \rightarrow S$ be a ring homomorphism. If $\alpha \in \operatorname{ker}(\phi)$ and $r \in R$, then $\alpha r, r \alpha \in \operatorname{ker}(\phi)$. That is, $\operatorname{ker}(\phi)$ is closed under multiplication by elements of R.

8.3 Ideals and Quotient Rings

Recall that in the case of a homomorphism ϕ of groups, the cosets of $\operatorname{ker}(\phi)$ have the structure of a group (that happens to be isomorphic to the image of ϕ by the First Isomorphism Theorem). In this case, $\operatorname{ker}(\phi)$ is the identity of the associated quotient group. Moreover, recall that every kernel is a normal subgroup of the domain and every normal subgroup can be realized as the kernel of some group homomorphism. Can we do the same sort of thing for rings?

Let $\phi: R \rightarrow S$ be a ring homomorphism with $\operatorname{ker}(\phi)=I$. Note that ϕ is also a group homomorphism of abelian groups and the cosets of $\operatorname{ker}(\phi)$ are of the form $r+I$. More specifically, if $\phi(r)=a$, then $\phi^{-1}(a)=r+I$.

These cosets naturally have the structure of a ring isomorphic to the image of ϕ :

$$
\begin{align*}
(r+I)+(s+I) & =(r+s)+I \tag{8.1}\\
(r+I)(s+I) & =(r s)+I \tag{8.2}
\end{align*}
$$

The reason for this is that if $\phi^{-1}(a)=X$ and $\phi^{-1}(b)=Y$, then the inverse image of $a+b$ and $a b$ are $X+Y$ and $X Y$, respectively.

The corresponding ring of cosets is called the quotient ring of R by $I=\operatorname{ker}(\phi)$ and is denoted by R / I. The additive structure of the quotient ring R / I is exactly the additive quotient group of the additive abelian group R by the normal subgroup I (all subgroups are normal in abelian groups). When I is the kernel of some ring homomorphism ϕ, the additive abelian quotient group R / I also has a multiplicative structure defined in (2) above, making R / I into a ring.

Can we make R/I into a ring for any subring I?

The answer is "no" in general, just like in the situation with groups. But perhaps this isn't obvious because if I is an arbitrary subring of R, then I is necessarily an additive subgroup of the abelian group R, which implies that I is an additive normal subgroup of the group R. It turns out that the multiplicative structure of R / I may not be well-defined if I is an arbitrary subring.

Let I be an arbitrary subgroup of the additive group R. Let $r+I$ and $s+I$ be two arbitrary cosets. In order for multiplication of the cosets to be well-defined, the product of the two cosets must be independent of choice of representatives. Let $r+\alpha$ and $s+\beta$ be arbitrary representatives of $r+I$ and $s+I$, respectively $(\alpha, \beta \in I)$, so that $r+I=(r+\alpha)+I$ and $s+I=(s+\beta)+I$. We must have

$$
\begin{equation*}
(r+\alpha)(s+\beta)+I=r s+I . \tag{8.3}
\end{equation*}
$$

This needs to be true for all possible choices of $r, s \in R$ and $\alpha, \beta \in I$. In particular, it must be true when $r=s=0$. In this case, we must have

$$
\begin{equation*}
\alpha \beta+I=I . \tag{8.4}
\end{equation*}
$$

But this only happens when $\alpha \beta \in I$. That is, one requirement for multiplication of cosets to be well-defined is that I must be closed under multiplication, making I a subring.

Next, if we let $s=0$ and let r be arbitrary, we see that we must have $r \beta \in I$ for every $r \in R$ and every $\beta \in I$. That is, it must be the case that I is closed under multiplication on the left by elements from R. Similarly, letting $r=0$, we can conclude that we must have I closed under multiplication on the right by elements from R.

On the other hand, if I is closed under multiplication on the left and on the right by elements from R, then it is clear that relation (4) above is satisfied.

It is easy to verify that if the multiplication of cosets defined in (2) above is welldefined, then this multiplication makes the additive quotient group R / I into a ring (just check the axioms for being a ring).

We have shown that the quotient R / I of the ring R by a subgroup I has a natural ring structure if and only if I is closed under multiplication on the left and right by elements of R (which also forces I to be a subring). Such subrings are called ideals.

Definition 8.40. Let R be a ring and let I be a subset of R.
(a) I is a left ideal (respectively, right ideal) of R if I is a subring and $r I \subseteq I$ (respectively, $I r \subseteq I$) for all $r \in R$.
(b) I is an ideal (or two-sided ideal) if I is both a left and a right ideal.

Here's a summary of everything that just happened.
Theorem 8.41. Let R be a ring and let I be an ideal of R. Then the additive quotient group R / I is a ring under the binary operations:

$$
\begin{align*}
(r+I)+(s+I) & =(r+s)+I \tag{8.5}\\
(r+I)(s+I) & =(r s)+I \tag{8.6}
\end{align*}
$$

for all $r, s \in R$. Conversely, if I is any subgroup such that the above operations are welldefined, then I is an ideal of R.

Theorem 8.42. If R a commutative ring and I is an ideal of R, then R / I is a commutative ring.

Theorem 8.43. Suppose I and J are ideals of the ring R. Then $I \cap J$ is an ideal of R.
As you might expect, we have some isomorphism theorems.
Theorem 8.44 (First Isomorphism Theorem for Rings). If $\phi: R \rightarrow S$ is a ring homomorphism, then $\operatorname{ker}(\phi)$ is an ideal of R and $R / \operatorname{ker}(\phi) \cong \phi(R)$.

We also have the expected Second, Third, and Fourth Isomorphism Theorems for rings. The next theorem tells us that a subring is an ideal if and only if it is a kernel of a ring homomorphism.

Theorem 8.45. If I is any ideal of R, then the natural projection $\pi: R \rightarrow R / I$ defined via $\pi(r)=r+I$ is a surjective ring homomorphism with $\operatorname{ker}(\pi)=I$.

For the remainder of this section, assume that R is a ring with identity $1 \neq 0$.
Definition 8.46. Let A be any subset of R. Let (A) denote the smallest ideal of R containing A, called the ideal generated by A. If A consists of a single element, say $A=\{a\}$, then $(a):=(\{a\})$ is called a principal ideal.

Remark 8.47. The following facts are easily verified.
(a) (A) is the intersection of all ideals containing A.
(b) If R is commutative, then $(a)=a R:=\{a r \mid r \in R\}$.

Example 8.48. In $\mathbb{Z}, n \mathbb{Z}=(n)=(-n)$. In fact, these are the only ideals in \mathbb{Z} (since these are the only subgroups). So, all the ideals in \mathbb{Z} are principal. If m and n are positive integers, then $n \mathbb{Z} \subseteq m \mathbb{Z}$ if and only if m divides n. Moreover, we have $(m, n)=(d)$, where d is the greatest common divisor of m and n.

Problem 8.49. Consider the ideal $(2, x)$ in $\mathbb{Z}[x]$. Note that $(2, x)=\{2 p(x)+x q(x) \mid p(x), q(x) \in$ $\mathbb{Z}[x]\}$. Argue that $(2, x)$ is not a principal ideal, i.e., there is no single polynomial in $\mathbb{Z}[x]$ that we can use to generate $(2, x)$.

Theorem 8.50. Assume R is a commutative ring with $1 \neq 0$. Let I be an ideal of R. Then $I=R$ if and only if I contains a unit.

Theorem 8.51. Assume R is a commutative ring with $1 \neq 0$. Then R is a field if and only if its only ideals are (0) and R.

Loosely speaking, the previous results say that fields are "like simple groups" (i.e, groups with no non-trivial normal subgroups).

Corollary 8.52. If R is a field, then every nonzero ring homomorphism from R into another ring is an injection.

8.4 Maximal and Prime Ideals

In this section of notes, we will study two important classes of ideals, namely maximal and prime ideals, and study the relationship between them. Throughout this entire section, we assume that all rings have a multiplicative identity $1 \neq 0$.
Definition 8.53. Assume R is a commutative ring with 1 . An ideal M in a ring R is called a maximal ideal if $M \neq R$ and the only ideals containing M are M and R.

Example 8.54. Here are a few examples. Checking the details is left as an exercise.
(a) In \mathbb{Z}, all the ideals are of the form $n \mathbb{Z}$ for $n \in \mathbb{Z}^{+}$. The maximal ideals correspond to the ideals $p \mathbb{Z}$, where p is prime.
(b) Consider the integral domain $\mathbb{Z}[x]$. The ideals (x) (i.e., the subring containing polynomials with 0 constant term) and (2) (i.e, the set of polynomials with even coefficients) are not maximal since both are contained in the proper ideal $(2, x)$. However, as we shall see soon, $(2, x)$ is maximal in $\mathbb{Z}[x]$.
(c) The zero ring has no maximal ideals.
(d) Consider the abelian group \mathbb{Q} under addition. We can turn \mathbb{Q} into a trivial ring by defining $a b=0$ for all $a, b \in \mathbb{Q}$. In this case, the ideals are exactly the additive subgroups of \mathbb{Q}. However, \mathbb{Q} has no maximal subgroups, and so \mathbb{Q} has no maximal ideals.

The next result states that rings with an identity $1 \neq 0$ always have maximal ideals. It turns out that we won't need this result going forward, so we'll skip its proof. However, it is worth noting that all known proofs make use of Zorn's Lemma (equivalent to the Axiom of Choice), which is also true for the proofs that a finitely generated group has maximal subgroups or that every vector spaces has a basis.
Theorem 8.55. In a ring with 1 , every proper ideal is contained in a maximal ideal.
For commutative rings, there is a very nice characterization about maximal ideals in terms of the structure of their quotient rings.

Theorem 8.56. Assume R is a commutative ring with 1 . Then M is a maximal ideal if and only if the quotient ring R / M is a field.

Example 8.57. We can use the previous theorem to verify whether an ideal is maximal.
(a) Recall that $\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z}_{n}$ and that \mathbb{Z}_{n} is a field if and only if n is prime. We can conclude that $n \mathbb{Z}$ is a maximal ideal precisely when n is prime.
(b) Define $\phi: \mathbb{Z}[x] \rightarrow \mathbb{Z}$ via $\phi(p(x))=p(0)$. Then ϕ is surjective and $\operatorname{ker}(\phi)=(x)$. By the First Isomorphism Theorem for Rings, we see that $\mathbb{Z}[x] /(x) \cong \mathbb{Z}$. However, \mathbb{Z} is not a field. Hence (x) is not maximal in $\mathbb{Z}[x]$. Now, define $\psi: \mathbb{Z} \rightarrow \mathbb{Z}_{2}$ via $\psi(x)=x \bmod 2$ and consider the composite homomorphism $\psi \circ \phi: \mathbb{Z} \rightarrow \mathbb{Z}_{2}$. It is clear that $\psi \circ \phi$ is onto and the kernel of $\psi \circ \phi$ is given by $\{p(x) \in \mathbb{Z}[x] \mid p(0) \in 2 \mathbb{Z}\}=(2, x)$. Again by the First Isomorphism Theorem for Rings, $\mathbb{Z}[x] /(2, x) \cong \mathbb{Z}_{2}$. Since \mathbb{Z}_{2} is a field, $(2, x)$ is a maximal ideal.

Definition 8.58. Assume R is a commutative ring with 1. An ideal P is called a prime ideal if $P \neq R$ and whenever the product $a b \in P$ for $a, b \in R$, then at least one of a or b is in P.

Example 8.59. In any integral domain, the 0 ideal (0) is a prime ideal. What if the ring is not an integral domain?

Remark 8.60. The notion of a prime ideal is a generalization of "prime" in \mathbb{Z}. Suppose $n \in \mathbb{Z}^{+} \backslash\{1\}$ such that n divides $a b$. In this case, n is guaranteed to divide either a or b exactly when n is prime. Now, let $n \mathbb{Z}$ be a proper ideal in \mathbb{Z} with $n>1$ and suppose $a b \in \mathbb{Z}$ for $a, b \in \mathbb{Z}$. In order for $n \mathbb{Z}$ to be a prime ideal, it must be true that n divides either a or b. However, this is only guaranteed to be true for all $a, b \in \mathbb{Z}$ when p is prime. That is, the nonzero prime ideals of \mathbb{Z} are of the form $p \mathbb{Z}$, where p is prime. Note that in the case of the integers, the maximal and nonzero prime ideals are the same.

Theorem 8.61. Assume R is a commutative ring with 1 . Then P is a prime ideal in R if and only if the quotient ring R / P is an integral domain.

Corollary 8.62. Assume R is a commutative ring with 1 . Every maximal ideal of R is a prime ideal.

Example 8.63. Recall that $\mathbb{Z}[x] /(x) \cong \mathbb{Z}$. Since \mathbb{Z} is an integral domain, it must be the case that (x) is a prime ideal in $\mathbb{Z}[x]$. However, as we saw in an earlier example, (x) is not maximal in $\mathbb{Z}[x]$ since \mathbb{Z} is not a field. This shows that the converse of the previous corollary is not true.

Appendix A

Elements of Style for Proofs

Years of elementary school math taught us incorrectly that the answer to a math problem is just a single number, "the right answer." It is time to unlearn those lessons; those days are over. From here on out, mathematics is about discovering proofs and writing them clearly and compellingly.

The following rules apply whenever you write a proof. I may refer to them, by number, in my comments on your homework and exams. Keep these rules handy so that you may refer to them as you write your proofs.

1. The writing process. Use the same writing process that you would for any writing project.
(a) Prewriting. This is the most mathematical step of the process. Often this step takes place on scratch paper. Figure out the mathematics: test conjectures, work out examples, try various proof techniques, etc.
(b) Writing. When you understand the mathematics it is time to write the first draft. The draft may have extraneous information, be missing information, be written in the wrong order, contain some minor mathematical errors, etc.
(c) Revising. Once you have a first draft, go back and revise the writing. Focus on large changes such as adding, removing, rearranging, and replacing. Fix any mathematical errors.
(d) Editing/proofreading. At this stage you must attend to the fine details. Fix any problems with spelling, grammar, word choice, punctuation, etc. Make sure all of the mathematics is typeset correctly.
(e) Publishing. Make the final changes so that you can submit your work. You may need to fit it to a style guide (get the margins correct, add a title page, etc.), convert it to a certain file type, or print it.
2. The burden of communication lies on you, not on your reader. It is your job to explain your thoughts; it is not your reader's job to guess them from a few hints. You are trying to convince a skeptical reader who doesn't believe you, so you need to argue with airtight logic in crystal clear language; otherwise the reader will continue
to doubt. If you didn't write something on the paper, then (a) you didn't communicate it, (b) the reader didn't learn it, and (c) the grader has to assume you didn't know it in the first place.
3. Tell the reader what you're proving. The reader doesn't necessarily know or remember what "Theorem 2.13 " is. Even a professor grading a stack of papers might lose track from time to time. Therefore, the statement you are proving should be on the same page as the beginning of your proof. For an exam this won't be a problem, of course, but on your homework, recopy the claim you are proving. This has the additional advantage that when you study for exams by reviewing your homework, you won't have to flip back in the notes/textbook to know what you were proving.
4. Use English words. Although there will usually be equations or mathematical statements in your proofs, use English sentences to connect them and display their logical relationships. If you look in your notes/textbook, you'll see that each proof consists mostly of English words.
5. Use complete sentences. If you wrote a history essay in sentence fragments, the reader would not understand what you meant; likewise in mathematics you must use complete sentences, with verbs, to convey your logical train of thought.
Some complete sentences can be written purely in mathematical symbols, such as equations (e.g., $a^{3}=b^{-1}$), inequalities (e.g., $x<5$), and other relations (like $5 \mid 10$ or $7 \in \mathbb{Z}$). These statements usually express a relationship between two mathematical objects, like numbers or sets. However, it is considered bad style to begin a sentence with symbols. A common phrase to use to avoid starting a sentence with mathematical symbols is "We see that..."
6. Show the logical connections among your sentences. Use phrases like "Therefore" or "because" or "if. .. , then..." or "if and only if" to connect your sentences.
7. Know the difference between statements and objects. A mathematical object is a thing, a noun, such as a group, an element, a vector space, a number, an ordered pair, etc. Objects either exist or don't exist. Statements, on the other hand, are mathematical sentences: they can be true or false.

When you see or write a cluster of math symbols, be sure you know whether it's an object (e.g., " $x^{2}+3$ ") or a statement (e.g., " $x^{2}+3<7$ "). One way to tell is that every mathematical statement includes a verb, such as $=, \leq$, "divides", etc.
8. " $=$ " means equals. Don't write $A=B$ unless you mean that A actually equals B. This rule seems obvious, but there is a great temptation to be sloppy. In calculus, for example, some people might write $f(x)=x^{2}=2 x$ (which is false), when they really mean that "if $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$."
9. Don't interchange $=$ and \Longrightarrow. The equals sign connects two objects, as in " $x^{2}=b$ "; the symbol " \Longrightarrow " is an abbreviation for "implies" and connects two statements, as in " $a+b=a \Longrightarrow b=0$." You should avoid using \Longrightarrow in your formal write-ups.
10. Say exactly what you mean. Just as the $=$ is sometimes abused, so too people sometimes write $A \in B$ when they mean $A \subseteq B$, or write $a_{i j} \in A$ when they mean that $a_{i j}$ is an entry in matrix A. Mathematics is a very precise language, and there is a way to say exactly what you mean; find it and use it.
11. Don't write anything unproven. Every statement on your paper should be something you know to be true. The reader expects your proof to be a series of statements, each proven by the statements that came before it. If you ever need to write something you don't yet know is true, you must preface it with words like "assume," "suppose," or "if" (if you are temporarily assuming it), or with words like "we need to show that" or "we claim that" (if it is your goal). Otherwise the reader will think they have missed part of your proof.
12. Write strings of equalities (or inequalities) in the proper order. When your reader sees something like

$$
A=B \leq C=D,
$$

he/she expects to understand easily why $A=B$, why $B \leq C$, and why $C=D$, and he/she expects the point of the entire line to be the more complicated fact that $A \leq$ D. For example, if you were computing the distance d of the point $(12,5)$ from the origin, you could write

$$
d=\sqrt{12^{2}+5^{2}}=13 .
$$

In this string of equalities, the first equals sign is true by the Pythagorean theorem, the second is just arithmetic, and the point is that the first item equals the last item: $d=13$.

A common error is to write strings of equations in the wrong order. For example, if you were to write " $\sqrt{12^{2}+5^{2}}=13=d^{\prime}$, your reader would understand the first equals sign, would be baffled as to how we know $d=13$, and would be utterly perplexed as to why you wanted or needed to go through 13 to prove that $\sqrt{12^{2}+5^{2}}=d$.
13. Avoid circularity. Be sure that no step in your proof makes use of the conclusion!
14. Don't write the proof backwards. Beginning students often attempt to write "proofs" like the following, which attempts to prove that $\tan ^{2}(x)=\sec ^{2}(x)-1$:

$$
\begin{aligned}
\tan ^{2}(x) & =\sec ^{2}(x)-1 \\
\left(\frac{\sin (x)}{\cos (x)}\right)^{2} & =\frac{1}{\cos ^{2}(x)}-1 \\
\frac{\sin ^{2}(x)}{\cos ^{2}(x)} & =\frac{1-\cos ^{2}(x)}{\cos ^{2}(x)} \\
\sin ^{2}(x) & =1-\cos ^{2}(x) \\
\sin ^{2}(x)+\cos ^{2}(x) & =1 \\
1 & =1
\end{aligned}
$$

Notice what has happened here: the writer started with the conclusion, and deduced the true statement " $1=1$." In other words, he/she has proved "If $\tan ^{2}(x)=\sec ^{2}(x)-$ 1 , then $1=1$," which is true but highly uninteresting.
Now this isn't a bad way of finding a proof. Working backwards from your goal often is a good strategy on your scratch paper, but when it's time to write your proof, you have to start with the hypotheses and work to the conclusion.
15. Be concise. Most students err by writing their proofs too short, so that the reader can't understand their logic. It is nevertheless quite possible to be too wordy, and if you find yourself writing a full-page essay, it's probably because you don't really have a proof, but just an intuition. When you find a way to turn that intuition into a formal proof, it will be much shorter.
16. Introduce every symbol you use. If you use the letter " k," the reader should know exactly what k is. Good phrases for introducing symbols include "Let $n \in \mathbb{N}$," "Let k be the least integer such that...," "For every real number $a \ldots$..." and "Suppose that X is a counterexample."
17. Use appropriate quantifiers (once). When you introduce a variable $x \in S$, it must be clear to your reader whether you mean "for all $x \in S$ " or just "for some $x \in S$." If you just say something like " $y=x^{2}$ where $x \in S$," the word "where" doesn't indicate whether you mean "for all" or "some".
Phrases indicating the quantifier "for all" include "Let $x \in S$ "; "for all $x \in S$ "; "for every $x \in S$ "; "for each $x \in S$ "; etc. Phrases indicating the quantifier "some" (or "there exists") include "for some $x \in S$ "; "there exists an $x \in S$ "; "for a suitable choice of $x \in S$ "; etc.
On the other hand, don't introduce a variable more than once! Once you have said "Let $x \in S$," the letter x has its meaning defined. You don't need to say "for all $x \in S$ " again, and you definitely should not say "let $x \in S$ " again.
18. Use a symbol to mean only one thing. Once you use the letter x once, its meaning is fixed for the duration of your proof. You cannot use x to mean anything else.
19. Don't "prove by example." Most problems ask you to prove that something is true "for all"-You cannot prove this by giving a single example, or even a hundred. Your answer will need to be a logical argument that holds for every example there possibly could be.
20. Write "Let $x=\ldots$," not "Let $\cdots=x$." When you have an existing expression, say a^{2}, and you want to give it a new, simpler name like b, you should write "Let $b=a^{2}$," which means, "Let the new symbol b mean a^{2}." This convention makes it clear to the reader that b is the brand-new symbol and a^{2} is the old expression he/she already understands.
If you were to write it backwards, saying "Let $a^{2}=b$," then your startled reader would ask, "What if $a^{2} \neq b$?"
21. Make your counterexamples concrete and specific. Proofs need to be entirely general, but counterexamples should be absolutely concrete. When you provide an example or counterexample, make it as specific as possible. For a set, for example, you must name its elements, and for a function you must give its rule. Do not say things like " θ could be one-to-one but not onto"; instead, provide an actual function θ that is one-to-one but not onto.
22. Don't include examples in proofs. Including an example very rarely adds anything to your proof. If your logic is sound, then it doesn't need an example to back it up. If your logic is bad, a dozen examples won't help it (see rule 19). There are only two valid reasons to include an example in a proof: if it is a counterexample disproving something, or if you are performing complicated manipulations in a general setting and the example is just to help the reader understand what you are saying.
23. Use scratch paper. Finding your proof will be a long, potentially messy process, full of false starts and dead ends. Do all that on scratch paper until you find a real proof, and only then break out your clean paper to write your final proof carefully. Do not hand in your scratch work!
Only sentences that actually contribute to your proof should be part of the proof. Do not just perform a "brain dump," throwing everything you know onto the paper before showing the logical steps that prove the conclusion. That is what scratch paper is for.

Appendix B

Fancy Mathematical Terms

Here are some important mathematical terms that you will encounter in this course and throughout your mathematical career.

1. Definition-a precise and unambiguous description of the meaning of a mathematical term. It characterizes the meaning of a word by giving all the properties and only those properties that must be true.
2. Theorem-a mathematical statement that is proved using rigorous mathematical reasoning. In a mathematical paper, the term theorem is often reserved for the most important results.
3. Lemma-a minor result whose sole purpose is to help in proving a theorem. It is a stepping stone on the path to proving a theorem. Very occasionally lemmas can take on a life of their own (Zorn's lemma, Urysohn's lemma, Burnside's lemma, Sperner's lemma).
4. Corollary-a result in which the (usually short) proof relies heavily on a given theorem (we often say that "this is a corollary of Theorem A").
5. Proposition-a proved and often interesting result, but generally less important than a theorem.
6. Conjecture-a statement that is unproved, but is believed to be true (Collatz conjecture, Goldbach conjecture, twin prime conjecture).
7. Claim-an assertion that is then proved. It is often used like an informal lemma.
8. Axiom/Postulate-a statement that is assumed to be true without proof. These are the basic building blocks from which all theorems are proved (Euclid's five postulates, Zermelo-Frankel axioms, Peano axioms).
9. Identity-a mathematical expression giving the equality of two (often variable) quantities (trigonometric identities, Euler's identity).
10. Paradox-a statement that can be shown, using a given set of axioms and definitions, to be both true and false. Paradoxes are often used to show the inconsistencies in a flawed theory (Russell's paradox). The term paradox is often used informally to describe a surprising or counterintuitive result that follows from a given set of rules (Banach-Tarski paradox, Alabama paradox, Gabriel's horn).

Appendix C

Definitions in Mathematics

It is difficult to overstate the importance of definitions in mathematics. Definitions play a different role in mathematics than they do in everyday life.

Suppose you give your friend a piece of paper containing the definition of the rarelyused word rodomontade. According to the Oxford English Dictionary* (OED) it is:

A vainglorious brag or boast; an extravagantly boastful, arrogant, or bombastic speech or piece of writing; an arrogant act.

Give your friend some time to study the definition. Then take away the paper. Ten minutes later ask her to define rodomontade. Most likely she will be able to give a reasonably accurate definition. Maybe she'd say something like, "It is a speech or act or piece of writing created by a pompous or egotistical person who wants to show off how great they are." It is unlikely that she will have quoted the OED word-for-word. In everyday English that is fine-you would probably agree that your friend knows the meaning of the rodomontade. This is because most definitions are descriptive. They describe the common usage of a word.

Let us take a mathematical example. The OED^{+}gives this definition of continuous.
Characterized by continuity; extending in space without interruption of substance; having no interstices or breaks; having its parts in immediate connection; connected, unbroken.

Likewise, we often hear calculus students speak of a continuous function as one whose graph can be drawn "without picking up the pencil." This definition is descriptive. (As we learned in calculus the picking-up-the-pencil description is not a perfect description of continuous functions.) This is not a mathematical definition.

Mathematical definitions are prescriptive. The definition must prescribe the exact and correct meaning of a word. Contrast the OED's descriptive definition of continuous with the the definition of continuous found in a real analysis textbook.

A function $f: A \rightarrow \mathbb{R}$ is continuous at a point $c \in A$ if, for all $\varepsilon>0$, there exists $\delta>0$ such that whenever $|x-c|<\delta$ (and $x \in A$) it follows that $|f(x)-f(c)|<\varepsilon$. If f

[^9]is continuous at every point in the domain A, then we say that f is continuous on $A . \ddagger$

In mathematics there is very little freedom in definitions. Mathematics is a deductive theory; it is impossible to state and prove theorems without clear definitions of the mathematical terms. The definition of a term must completely, accurately, and unambiguously describe the term. Each word is chosen very carefully and the order of the words is critical. In the definition of continuity changing "there exists" to "for all," changing the orders of quantifiers, changing $<$ to \leq or $>$, or changing \mathbb{R} to \mathbb{Z} would completely change the meaning of the definition.

What does this mean for you, the student? Our recommendation is that at this stage you memorize the definitions word-for-word. It is the safest way to guarantee that you have it correct. As you gain confidence and familiarity with the subject you may be ready to modify the wording. You may want to change "for all" to "given any" or you may want to change $|x-c|<\delta$ to $-\delta<x-c<\delta$ or to "the distance between x and c is less than δ."

Of course, memorization is not enough; you must have a conceptual understanding of the term, you must see how the formal definition matches up with your conceptual understanding, and you must know how to work with the definition. It is perhaps with the first of these that descriptive definitions are useful. They are useful for building intuition and for painting the "big picture." Only after days (weeks, months, years?) of experience does one get an intuitive feel for the ε, δ-definition of continuity; most mathematicians have the "picking-up-the-pencil" definitions in their head. This is fine as long as we know that it is imperfect, and that when we prove theorems about continuous functions mathematics we use the mathematical definition.

We end this discussion with an amusing real-life example in which a descriptive definition was not sufficient. In 2003 the German version of the game show Who wants to be a millionaire? contained the following question: "Every rectangle is: (a) a rhombus, (b) a trapezoid, (c) a square, (d) a parallelogram."

The confused contestant decided to skip the question and left with $€ 4000$. Afterward the show received letters from irate viewers. Why were the contestant and the viewers upset with this problem? Clearly a rectangle is a parallelogram, so (d) is the answer. But what about (b)? Is a rectangle a trapezoid? We would describe a trapezoid as a quadrilateral with a pair of parallel sides. But this leaves open the question: can a trapezoid have two pairs of parallel sides or must there only be one pair? The viewers said two pairs is allowed, the producers of the television show said it is not. This is a case in which a clear, precise, mathematical definition is required.

[^10]
[^0]: *If you'd like to play the game, try going here: https://www.kongregate.com/games/spinpossible.

[^1]: $\S_{\text {Hint: }}$ First consider the case when either g or h is the identity e.

[^2]: *For the forward implication, if $\langle g\rangle$ is finite, then there exists distinct positive integers i and j such that $g^{i}=g^{j}$. Can you find a useful way to rewrite this equation? For the reverse implication, let $m \in \mathbb{Z}$ and use the Division Algorithm with m and n.
 ${ }^{\dagger}$ Note that Theorem 4.17 together with the Well-Ordering Principle guarantees the existence of a smallest positive integer n such that $g^{n}=e$. The claim that the set contains n distinct elements is not immediate. You need to argue that there are no repeats in the list. Choose distinct $i, j \in\{0,1, \ldots, n-1\}$ such that $i \neq j$ and then show that $g^{i} \neq g^{j}$. Consider a proof by contradiction and try to contradict the minimality of n.

[^3]: \ddagger For the forward implication, try a proof by contradiction and suppose there exists integers i and j such that $g^{i}=g^{j}$.

[^4]: $k=\frac{n}{\operatorname{gcd}(n, m)}$ has the desired property and then verify that it is the smallest such exponent.
 ${ }^{\mathbb{I}}$ Use Theorem 4.45 for the forward implication. For the reverse implication, first prove that for all $m \in \mathbb{Z}$, $\left\langle g^{m}\right\rangle=\left\langle g^{g c d}(m, n)\right\rangle$ by proving two set containments. To show $\left\langle g^{m}\right\rangle \subseteq\left\langle g^{\operatorname{gcd}(m, n)}\right\rangle$, use the fact that there exists an integer q such that $m=q \cdot \operatorname{gcd}(m, n)$. For the reverse containment, you may freely use a fact known as Bezout's Lemma, which states that $\operatorname{gcd}(m, n)=n x+m y$ for some integers x and y.

[^5]: ${ }^{\|}$Hint: First, verify that $(x y)^{m n}=e$. Now, suppose $|x y|=k$. What do you immediately know about the relationship between k and $m n$. Next, consider $(x y)^{k n}$. Argue that m divides $k n$ and then argue that m divides k. Similarly, n divides k. Ultimately, conclude that $m n=k$.
 ${ }^{* *}$ Hint: Suppose $g \in G$ such that $|g|=n$. Let h be an arbitrary element in G such that $|h|=m$. You need to show that m divides n. For sake of a contradiction, assume otherwise. Then there exists a prime p whose multiplicity as a factor of m exceeds that of n. Let p^{a} be the highest power of p in m and p^{b} be the highest power of p in n, so $a>b$. Consider the elements $g^{p^{a}}$ and $h^{m / p^{b}}$.

[^6]: ${ }^{++}$Hint: Let n be the maximal order among the elements of G and let $g \in G$ be an element with order n. Prove that $G=\langle g\rangle$.

[^7]: ${ }^{\S}$ Hint: To show that A_{n} is a group, argue that A_{n} is a subgroup of S_{n} using the Two-Step Subgroup Test (see Theorem 3.6). To show that $\left|A_{n}\right|=n!/ 2$, prove that the number of even permutations in S_{n} is the same as the number of odd permutations in S_{n}. Here is one way to accomplish this. Define $f: A_{n} \rightarrow S_{n} \backslash A_{n}$ via $f(\sigma)=(1,2) \sigma$. Note that $S_{n} \backslash A_{n}$ is the set of odd permutations in S_{n}. Show that f is a bijection.

[^8]: ${ }^{\dagger}$ As you probably expect, $\#(a H)$ denotes the size of $a H$. Note that everything works out just fine even if H has infinite order.

[^9]: *http://www.oed.com/view/Entry/166837
 ${ }^{\dagger} h t t p: / /$ www.oed.com/view/Entry/40280

[^10]: \ddagger This definition is taken from page 109 of Stephen Abbott's Understanding Analysis, but the definition would be essentially the same in any modern real analysis textbook.

