Chapter 8

An Introduction to Rings

8.1 Definitions and Examples

Recall that a group is a set together with a single binary operation, which together satisfy
a few modest properties. Loosely speaking, a ring is a set together with two binary oper-
ations (called addition and multiplication) that are related via a distributive property.

Definition 8.1. A ring R is a set together with two binary operations + and - (called
addition and multiplication, respectively) satisfying the following:

(i) (R,+)is an abelian group.
(ii) - is associative: (a-b)-c=a-(b-c) for all a,b,c € R.

(iii) The distributive property holds: a-(b+c)=(a-b)+(a-c)and (a+b)-c=(a-c)+(b-c)
foralla,b,ceR.

Remark 8.2. We make a couple comments about notation.

(a) We often write ab in place of a - b.

(b) The additive inverse of the ring element a € R is denoted —a.
Theorem 8.3. If R is a ring, then for all 4,b € R:

(@) 0Oa=a0=0

(c) (=a)(=b) =ab
Definition 8.4. A ring R is called commutative if multiplication is commutative.

Definition 8.5. A ring R is said to have an identity (or called a ring with 1) if there is an
element 1 € R such that la=al =aforall aeR.

Problem 8.6. Justify that Z is a commutative ring with 1 under the usual operations of
addition and multiplication. Which elements have multiplicative inverses in Z?
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Problem 8.7. Justify that Z, is a commutative ring with 1 under addition and multipli-
cation mod n.

Problem 8.8. Consider the set Z15 =1{0,1,2,3,4,5,6,7,8,9}. Which elements have multi-
plicative inverses in Z1(?

Problem 8.9. For each of the following, find a positive integer n such that the ring Z,
does not have the stated property.

(a) a®

=aimpliesa=0ora=1.
(b) ab=0impliesa=0o0r b =0.
(c) ab=acand a=0imply b =rc.

Theorem 8.10. If R is a ring with 1, then the multiplicative identity is unique and —a =
(-1)a.

Problem 8.11. Requiring (R, +) to be a group is fairly natural, but why require (R, +) to be
abelian? Suppose R has a 1. Compute (1 + 1)(a+ b) in two different ways.

Definition 8.12. A ring R with 1 (with 1 # 0) is called a division ring if every nonzero
element in R has a multiplicative inverse: if a € R\ {0}, then there exists b € R such that
ab=ba=1.

Definition 8.13. A commutative division ring is called a field.

Definition 8.14. A nonzero element 4 in a ring R is called a zero divisor if there is a
nonzero element b € R such that either ab = 0 or ba = 0.

Problem 8.15. Are there any zero divisors in Z(? If so, find all of them.
Problem 8.16. Are there any zero divisors in Zs? If so, find all of them.

Problem 8.17. Provide an example of a ring R and elements 4,b € R such that ax = b has
more than one solution. How does this compare with groups?

Theorem 8.18 (Cancellation Law). Assume a,b,c € R such that a is not a zero divisor. If
ab = ac, then eithera=0or b =c.

Definition 8.19. Assume R is a ring with 1 with 1 # 0. An element u € R is called a unit
in R if u has a multiplicative inverse (i.e., there exists v € R such that uv = vu = 1). The
set of units in R is denoted U(R).

Problem 8.20. Consider the ring Z.
(a) Find U(Zzo)
(b) Find the zero divisors of Z,.

(c) Any observations?
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Theorem 8.21. If U(R) # 0, then U(R) forms a group under multiplication.

Remark 8.22. We make a few observations.

(a)

(b)
(c)

A field is a commutative ring F with identity 1 # 0 in which every nonzero element
is a unit, i.e., U(F) = F \ {0}.

Zero divisors can never be units.

Fields never have zero divisors.

Definition 8.23. A commutative ring with identity 1 = 0 is called an integral domain if
it has no zero divisors.

Remark 8.24. The Cancellation Law (Theorem 8.18) holds in integral domains for any
three elements.

Theorem 8.25. Any finite integral domain is a field.

Example 8.26. Here are a few examples. Details left as an exercise.

(a)

(c)

(d)

()

(f)

Zero Ring: If R = {0}, we can turn R into a ring in the obvious way. The zero
ring is a finite commutative ring with 1. It is the only ring where the additive and
multiplicative identities are equal. The zero ring is not a division ring, not a field,
and not an integral domain.

Trivial Ring: Given any abelian group R, we can turn R into a ring by defining
multiplication via ab = 0 for all a,b € R. Trivial rings are commutative rings in
which every nonzero element is a zero divisor. Hence a trivial ring is not a division
ring, not a field, and not a integral domain.

The integers form an integral domain, but Z is not a division ring, and hence not a
field.

The rational numbers @, the real numbers R, and the complex numbers C are fields
under the usual operations of addition and multiplication.

The group of units U(Z,) is the set of elements in Z, that are relatively prime to n.
That is, U(Z,) = U,,. All other nonzero elements are zero divisors. It turns out that
Z,, forms a finite field if and only if n is prime.

The set of even integers 2Z forms a commutative ring under the usual operations of
addition and multiplication. However, 2Z does not have a 1, and hence cannot be a
division ring nor a field. Moreover, if you look closely at the definition of integral
domain, you'll see that 2Z is also not an integral domain since 2Z does not contain
a multiplicative identity.

Polynomial Ring: Fix a commutative ring R. Let R[x] denote the set of polynomials
in the variable x with coefficients in R. Then R[x] is a commutative ring. Moreover,
R[x]is aring with 1 if and only if R is a ring with 1. The units of R[x] are exactly the
units of R (if there are any). So, R[x] is never a division ring nor a field. However, if
R is an integral domain, then so is R[x].
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(h) Matrix Ring: Fix a ring R and let n be a positive integer. Let M, (R) be the set of
n x n matrices with entries from R. Then M, (R) forms a ring under ordinary matrix
addition and multiplication. If R is nontrivial and n > 2, then M,,(R) always has zero
divisors and M,,(R) is not commutative even if Ris. If R has a 1, then the matrix with
1’s down the diagonal and 0’s elsewhere is the multiplicative identity in M, (R). In
this case, the group of units is the set of invertible n x n matrices, denoted GL,,(R)
and called the general linear group of degree n over R.

(i) Quadratic Field: Define Q(V2) = {a+ bV2 | a,b € Q}. It turns out that Q(V2) is a
field. In fact, we can replace 2 with any rational number that is not a perfect square

in Q.

(j) Hamilton Quaternions: Define H ={a+bi+cj+dk|a,b,c,d €eR,i,j, k € Qg} Then H
forms a ring, where addition is definite componentwise in i, j, and k and multipli-
cation is defined by expanding products and the simplifying using the relations of
Qg. It turns out that H is a non-commutative ring with 1.

Problem 8.27. Find an example of a ring R and an element a € R\ {0} such that a is neither
a zero divisor nor a unit.

Definition 8.28. A subring of a ring R is a subgroup of R under addition that is also
closed under multiplication.

Remark 8.29. The property “is a subring” is clearly transitive. To show that a subset S of
aring R is a subring, it suffices to show that S # 0, S is closed under subtraction, and S is
closed under multiplication.

Example 8.30. Here are a few quick examples.
(a) Zis a subring of Q, which is a subring of R, which in turn is a subring of C.
(b) 2Z is a subring of Z.
(c) The set Z(V2) = {a+bV2|a,b € Z} is a subring of Q(V2).
(d) The ring R is a subring of R[x] if we identify R with set of constant functions.
(e) The set of polynomials with zero constant term in R[x] is a subring of R[x].
(f) Z[x]is a subring of Q[x].
(g) Z, is not a subring of Z as the operations are different.

Problem 8.31. Consider the ring Z;, from Problem 8.8. Let S = {0, 2,4, 6, 8}.
(a) Argue that S is a subring of Z.
(b) Is S a ring with 1? If so, find the multiplicative identity. If not, explain why.

(c) Is S a field? Justify your answer.
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Problem 8.32. Suppose R is a ring and let a € R. Define S = {x € R | ax = 0}. Prove that S
is a subring of R.

Problem 8.33. Consider the ring Z. It turns out that 2Z and 3Z are subrings (but you
don’t need to prove this). Determine whether 2Z U 3Z is a subring of Z. Justify your
answer.

8.2 Ring Homomorphisms

Definition 8.34. Let R and S be rings. A ring homomorphism is a map ¢ : R — S satis-
fying

(@) ¢(a+b)=¢(a)+ (D)
(b) p(ab) = Pp(a)p(b)

for all a,b € R. The kernel of ¢ is defined via ker(¢p) ={a € R| ¢(a) = 0}. If ¢ is a bijection,
then ¢ is called an isomorphism, in which case, we say that R and S are isomorphic rings
and write R = S.

Example 8.35.

(a) For n € Z, define ¢,, : Z — 7Z via ¢,(x) = nx. We see that ¢,(x+y) = n(x+y) =

nx+1y = b(x)+ du(). However, ¢, (xy) = n(xy) while b, (x)bu(y) = (nx)(ny) = nxy.

It follows that ¢,, is a ring homomorphism exactly when n € {0,1}.

(b) Define ¢ : Q[x] — Q via ¢(p(x)) = p(0) (called evaluation at 0). It turns out that ¢ is
a ring homomorphism, where ker(¢) is the set of polynomials with 0 constant term.

Problem 8.36. For each of the following, determine whether the given function is a ring
homomorphism. Justify your answers.

(a) Define ¢ : Zy — Z1, via ¢(x) = 3x.

(b) Define ¢ : Z1g — Z( via ¢(x) = 5x.
(c) Let S = {(_“b Z) la,be R}. Define ¢ : C — S via ¢(a+ib) = (_“b Z)

(d) LetT:{(g i)la,beZ}. Deﬁne¢:T—>Zvia¢((g i])):a.

Theorem 8.37. Let ¢ : R — S be a ring homomorphism.
(a) ¢(R)is a subring of S.
(b) ker(¢) is a subring of R.
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Problem 8.38. Suppose ¢ : R — S is a ring homomorphism such that R is a ring with 1,
call it 1. Prove that ¢(1g) is the multiplicative identity in ¢(R) (which is a subring of
S). Can you think of an example of a ring homomorphism where S has a multiplicative
identity that is not equal to ¢(15)?

Theorem 8.37(b) states that the kernel of a ring homomorphism is a subring. This is
analogous to the kernel of a group homomorphism being a subgroup. However, recall
that the kernel of a group homomorphism is also a normal subgroup. Like the situation
with groups, we can say something even stronger about the kernel of a ring homomor-
phism. This will lead us to the notion of an ideal.

Theorem 8.39. Let ¢ : R — S be a ring homomorphism. If a € ker(¢) and r € R, then
ar,ra € ker(¢). That is, ker(¢p) is closed under multiplication by elements of R.

8.3 Ideals and Quotient Rings

Recall that in the case of a homomorphism ¢ of groups, the cosets of ker(¢) have the
structure of a group (that happens to be isomorphic to the image of ¢ by the First Iso-
morphism Theorem). In this case, ker(¢) is the identity of the associated quotient group.
Moreover, recall that every kernel is a normal subgroup of the domain and every normal
subgroup can be realized as the kernel of some group homomorphism. Can we do the
same sort of thing for rings?

Let ¢ : R — S be a ring homomorphism with ker(¢) = I. Note that ¢ is also a group
homomorphism of abelian groups and the cosets of ker(¢) are of the form r + 1. More
specifically, if ¢(r) = a, then ¢~ (a) =r +1.

These cosets naturally have the structure of a ring isomorphic to the image of ¢:

(r+I)+(s+I)=(r+s)+1 (8.1)
(r+I)(s+1)=(rs)+1

The reason for this is that if ¢~!(a) = X and ¢~!(b) = Y, then the inverse image of a + b
and ab are X + Y and XY, respectively.

The corresponding ring of cosets is called the quotient ring of R by I = ker(¢) and
is denoted by R/I. The additive structure of the quotient ring R/I is exactly the additive
quotient group of the additive abelian group R by the normal subgroup I (all subgroups
are normal in abelian groups). When I is the kernel of some ring homomorphism ¢,
the additive abelian quotient group R/I also has a multiplicative structure defined in (2)
above, making R/I into a ring.

Can we make R/I into a ring for any subring I?

The answer is “no” in general, just like in the situation with groups. But perhaps this
isn’t obvious because if I is an arbitrary subring of R, then I is necessarily an additive
subgroup of the abelian group R, which implies that I is an additive normal subgroup of
the group R. It turns out that the multiplicative structure of R/I may not be well-defined
if I is an arbitrary subring.
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Let I be an arbitrary subgroup of the additive group R. Let r +1 and s+ I be two
arbitrary cosets. In order for multiplication of the cosets to be well-defined, the product
of the two cosets must be independent of choice of representatives. Let r + @ and s + 3 be
arbitrary representatives of r + I and s + I, respectively (o, €I),sothat r+ [ =(r+a)+1
and s+1 = (s+ )+ 1. We must have

(r+a)(s+p)+I=rs+1. (8.3)

This needs to be true for all possible choices of 7,5 € R and &, € I. In particular, it must
be true when r = s = 0. In this case, we must have

ap+I=1I. (8.4)

But this only happens when ap € I. That is, one requirement for multiplication of cosets
to be well-defined is that I must be closed under multiplication, making I a subring.

Next, if we let s = 0 and let r be arbitrary, we see that we must have 7 € I for every
r € Rand every f € I. That is, it must be the case that I is closed under multiplication on
the left by elements from R. Similarly, letting r = 0, we can conclude that we must have I
closed under multiplication on the right by elements from R.

On the other hand, if I is closed under multiplication on the left and on the right by
elements from R, then it is clear that relation (4) above is satisfied.

It is easy to verify that if the multiplication of cosets defined in (2) above is well-
defined, then this multiplication makes the additive quotient group R/I into a ring (just
check the axioms for being a ring).

We have shown that the quotient R/I of the ring R by a subgroup I has a natural ring
structure if and only if I is closed under multiplication on the left and right by elements
of R (which also forces I to be a subring). Such subrings are called ideals.

Definition 8.40. Let R be a ring and let I be a subset of R.

(a) I is a left ideal (respectively, right ideal) of R if I is a subring and rI C I (respec-
tively, Ir CI) for all r e R.

(b) Iis an ideal (or two-sided ideal) if I is both a left and a right ideal.
Here’s a summary of everything that just happened.

Theorem 8.41. Let Rbe aring and let I be an ideal of R. Then the additive quotient group
R/I is a ring under the binary operations:

(r+I)+(s+I)=(r+s)+1 (8.5)
(r+I)(s+1)=(rs)+1

for all r,s € R. Conversely, if I is any subgroup such that the above operations are well-
defined, then I is an ideal of R.

Theorem 8.42. If R a commutative ring and I is an ideal of R, then R/I is a commutative
ring.
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Theorem 8.43. Suppose I and ] are ideals of the ring R. Then I N] is an ideal of R.
As you might expect, we have some isomorphism theorems.

Theorem 8.44 (First Isomorphism Theorem for Rings). If ¢ : R — S is a ring homomor-
phism, then ker(¢) is an ideal of R and R/ker(¢) = ¢(R).

We also have the expected Second, Third, and Fourth Isomorphism Theorems for
rings. The next theorem tells us that a subring is an ideal if and only if it is a kernel
of a ring homomorphism.

Theorem 8.45. If I is any ideal of R, then the natural projection 7t : R — R/I defined via
7t(r) = r +1 is a surjective ring homomorphism with ker(m) = I.

For the remainder of this section, assume that R is a ring with identity 1 = 0.

Definition 8.46. Let A be any subset of R. Let (A) denote the smallest ideal of R contain-
ing A, called the ideal generated by A. If A consists of a single element, say A = {a}, then
(a) := ({a}) is called a principal ideal.

Remark 8.47. The following facts are easily verified.
(a) (A)is the intersection of all ideals containing A.
(b) If R is commutative, then (a) = aR :={ar | r € R}.

Example 8.48. In Z, nZ = (n) = (—n). In fact, these are the only ideals in Z (since these are
the only subgroups). So, all the ideals in Z are principal. If m and n are positive integers,
then nZ C mZ if and only if m divides n. Moreover, we have (m,n) = (d), where d is the
greatest common divisor of m and n.

Problem 8.49. Consider the ideal (2, x) in Z[x]. Note that (2,x) = {2p(x)+xq(x) | p(x),q(x) €
Z[x]}. Argue that (2,x) is not a principal ideal, i.e., there is no single polynomial in Z[x
that we can use to generate (2, x).

Theorem 8.50. Assume R is a commutative ring with 1 # 0. Let I be an ideal of R. Then
I = Rif and only if I contains a unit.

Theorem 8.51. Assume R is a commutative ring with 1 # 0. Then R is a field if and only
if its only ideals are (0) and R.

Loosely speaking, the previous results say that fields are “like simple groups” (i.e,
groups with no non-trivial normal subgroups).

Corollary 8.52. If R is a field, then every nonzero ring homomorphism from R into an-
other ring is an injection.
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8.4 Maximal and Prime Ideals

In this section of notes, we will study two important classes of ideals, namely maximal
and prime ideals, and study the relationship between them. Throughout this entire sec-
tion, we assume that all rings have a multiplicative identity 1 = 0.

Definition 8.53. Assume R is a commutative ring with 1. An ideal M in a ring R is called
a maximal ideal if M # R and the only ideals containing M are M and R.

Example 8.54. Here are a few examples. Checking the details is left as an exercise.

(a) In Z, all the ideals are of the form nZ for n € Z*. The maximal ideals correspond to
the ideals pZ, where p is prime.

(b) Consider the integral domain Z[x]. The ideals (x) (i.e., the subring containing poly-
nomials with 0 constant term) and (2) (i.e, the set of polynomials with even coeffi-
cients) are not maximal since both are contained in the proper ideal (2, x). However,
as we shall see soon, (2, x) is maximal in Z[x].

(c) The zero ring has no maximal ideals.

(d) Consider the abelian group Q under addition. We can turn Q into a trivial ring
by defining ab = 0 for all a,b € Q. In this case, the ideals are exactly the additive
subgroups of Q. However, Q has no maximal subgroups, and so Q has no maximal
ideals.

The next result states that rings with an identity 1 # 0 always have maximal ideals. It
turns out that we won’t need this result going forward, so we’ll skip its proof. However,
it is worth noting that all known proofs make use of Zorn’s Lemma (equivalent to the
Axiom of Choice), which is also true for the proofs that a finitely generated group has
maximal subgroups or that every vector spaces has a basis.

Theorem 8.55. In a ring with 1, every proper ideal is contained in a maximal ideal.

For commutative rings, there is a very nice characterization about maximal ideals in
terms of the structure of their quotient rings.

Theorem 8.56. Assume R is a commutative ring with 1. Then M is a maximal ideal if and
only if the quotient ring R/M is a field.

Example 8.57. We can use the previous theorem to verify whether an ideal is maximal.

(a) Recall that Z/nZ = 7Z,, and that Z,, is a field if and only if n is prime. We can conclude
that nZ is a maximal ideal precisely when 7 is prime.

(b) Define ¢ : Z[x] — Z via ¢(p(x)) = p(0). Then ¢ is surjective and ker(¢) = (x). By the
First Isomorphism Theorem for Rings, we see that Z[x]/(x) = Z. However, Z is not a
field. Hence (x) is not maximal in Z[x]. Now, define ¢ : Z — Z, via ¢(x) = x mod 2
and consider the composite homomorphism o ¢ : Z — Z,. It is clear that ¢ o ¢p is
onto and the kernel of 1o ¢ is given by {p(x) € Z[x] | p(0) € 2Z} = (2,x). Again by the
First Isomorphism Theorem for Rings, Z[x]/(2,x) = Z,. Since Z, is a field, (2,x) is a
maximal ideal.
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Definition 8.58. Assume R is a commutative ring with 1. An ideal P is called a prime
ideal if P # R and whenever the product ab € P for a,b € R, then at least one of a or b is in
P.

Example 8.59. In any integral domain, the 0 ideal (0) is a prime ideal. What if the ring is
not an integral domain?

Remark 8.60. The notion of a prime ideal is a generalization of “prime” in Z. Suppose
n € Z* \ {1} such that n divides ab. In this case, n is guaranteed to divide either a or b
exactly when n is prime. Now, let nZ be a proper ideal in Z with n > 1 and suppose ab € Z
for a,b € Z. In order for nZ to be a prime ideal, it must be true that n divides either a or
b. However, this is only guaranteed to be true for all 4,b € Z when p is prime. That is, the
nonzero prime ideals of Z are of the form pZ, where p is prime. Note that in the case of
the integers, the maximal and nonzero prime ideals are the same.

Theorem 8.61. Assume R is a commutative ring with 1. Then P is a prime ideal in R if
and only if the quotient ring R/P is an integral domain.

Corollary 8.62. Assume R is a commutative ring with 1. Every maximal ideal of R is a
prime ideal.

Example 8.63. Recall that Z[x]/(x) = Z. Since Z is an integral domain, it must be the
case that (x) is a prime ideal in Z[x]. However, as we saw in an earlier example, (x) is
not maximal in Z[x] since 7Z is not a field. This shows that the converse of the previous
corollary is not true.
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