Problem 4.116. What are the possible orders for elements in S_{6} and A_{6} ? What about S_{7} and A_{7} ?

$$
\left|S_{6}\right|=6!=720
$$

Lagrange's Thu sags that any divisor of 720 is a possible order, but certainly not all of these divisors actually occur as orders.

Possible disjoint cycle types in S_{6} together $w \mid$ their orders:

$$
\begin{aligned}
& *|(1)|=1 \\
& |(a b)|=2 \\
& *|(a b)(c d)|=\mid c \mathrm{~cm}(2,2)=2 \\
& |(a b)(c d)(e t)|=\mid c \cos (2,2,2)=2 \\
& *|(a b c)|=3 \\
& \mid(a b c)(\text { de })|=| c a n(3,2)=6 \\
& *|(a b c)(d e f)|=\mid c m(3,3)=3
\end{aligned}
$$

$$
\begin{aligned}
& |(a b c d)|=4 \\
& *|(a b c d)(e f)|=\mid \operatorname{cm}(4,2)=4 \\
& *|(a b c d e)|=5 \\
& |(a b c d e f)|=6
\end{aligned}
$$

So, we have elants of order $1,2,3,4,5,6$

Now, let's consider A_{6}, which consists of the even permutations in S_{6}.

I've starred the cycle types above w/ pink that yield even perms.

Thus, we have elunts of order $1,2,3,4,5$ in A_{6}.

Important: Dunt read into this example too much. In S_{n}, A_{n} in general the orders arenit always consecutive like above.

