Problem 6.34. For each quotient group below, describe the group. If possible, state what group each is isomorphic to. You may assume that we are taking the quotient by a normal subgroup.
(a) $Q_{8} /\langle-1\rangle$
(b) $Q_{8} /\langle i\rangle$
(c) $\mathbb{Z}_{4} /\langle 2\rangle$
(d) $V_{4} /\langle h\rangle$
(e) $A_{4} /\langle(1,2)(3,4),(1,3)(2,4)\rangle$
(f) $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) /\langle(1,1)\rangle$
(g) $\mathbb{Z} / 4 \mathbb{Z}$
(h) S_{4} / A_{4}
(i) $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) /\left(\{0\} \times \mathbb{Z}_{2}\right)$

Note: Recall that $|G / H|=\#$ of coset of H in G. when G is finite, this is simply

$$
|G / H|=\frac{|G|}{|H|} .
$$

However, G / H may be finite even if G is not. For many of the problems above, we can quickly determine the isomorphism type from the order alone. In particular, if the order is prime, say p, then we know the grape is isomorphic to \mathbb{Z}_{p}.

If the order is not prime, we might need to do more work.

Here are the easy ones:
(b) $\left|Q_{8 /\langle i\rangle}\right|=\frac{8}{4}=2 \Rightarrow Q_{8} /\langle i\rangle \cong \mathbb{Z}_{2}$
(c) $\left|\mathbb{Z}_{4} /\langle 2\rangle\right|=\frac{4}{2}=2 \Rightarrow \mathbb{Z}_{4} /\langle 2\rangle \cong \mathbb{Z}_{2}$
(d) $\left|V_{4} /\langle n\rangle\right|=\frac{4}{2}=2 \Rightarrow V_{4} /\langle n\rangle \cong \mathbb{Z}_{2}$
(e) Recall that $\left|A_{4}\right|=12$. It's not too hard to verify that

$$
\langle(12)(34),(13))(24)\rangle=\{e,(12)(34),(13)(24),(14)(23)\} .
$$

This implies that $\left.\left|A_{4}\right|\langle(12)(34),(13)(24)\rangle\right\rangle=3$.
Thus, $A_{4} /\langle(12)(34),(13)(24)\rangle \cong \mathbb{Z}_{3}$.
(f)

$$
\begin{aligned}
& \left|\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right|\langle(1,1)\rangle \left\lvert\,=\frac{4}{2}=2\right. \\
& \Rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2} /\langle(1,1)\rangle \cong \mathbb{Z}_{2}
\end{aligned}
$$

(h) $\left|S_{n}\right| A_{n} \left\lvert\,=\frac{n!}{n!/ 2}=2 \Rightarrow S_{n} / A_{n} \cong \mathbb{Z}_{2}\right.$.

The harder ones are (a), (g), (i).
(a) We've done this one a couple times.

In particular, see Figure 6.2.

$$
Q_{8 /\langle-1\rangle} \cong V_{4} .
$$

(g) First, observe that

$$
\mathbb{Z} / 4 \mathbb{Z}=\{4 \mathbb{Z}, 1+4 \mathbb{Z}, 2+4 \mathbb{Z}, 3+4 \mathbb{Z}\},
$$

So that $|\mathbb{Z} / 4 \mathbb{Z}|=4$. This implies that $\mathbb{Z} / 4 \mathbb{Z}$ is isomorphic to either \mathbb{Z}_{4} or V_{4}. However, since

$$
1,1+1=2,1+1+1=3 \notin 4 \geq \text { yet } 1+1+1+1=0
$$

is in $4 \mathbb{Z},|1+4 \mathbb{Z}|=4$, which implies that $\langle 1+4 \mathbb{Z}\rangle=\mathbb{Z} / 4 \mathbb{Z}$, and hence $\mathbb{Z} / 4 \mathbb{Z}$ is cyclic. Thus, $\mathbb{Z} / 4 \mathbb{Z} \cong \mathbb{Z}_{4}$. we can also
do the quotient process to see Hat this is true:

\downarrow quotient process

(i) First, observe that $\left|\mathbb{Z}_{11} \times \mathbb{Z}_{2}\right|=8$ while $\left|\{0\} \times \mathbb{Z}_{\alpha}\right|=2$. Then

$$
\left|\mathbb{Z}_{4} \times \mathbb{Z}_{2} /\{0\} \times \mathbb{Z}_{2}\right|=4 \text {, }
$$

and so $\mathbb{Z}_{4} \times \mathbb{Z}_{2} /\{0\} \times \mathbb{Z}_{2}$ is either iso to \mathbb{Z}_{4} or V_{4}. There are two possible approaches to determine the correct ans:
(1) Compute the orders of elunts in the quotient. If there is an elunt of order 4 , then the ans is \mathbb{Z}_{4}; ole its V_{4}.
(2) Do the quotient process to the cayley diagram.
Pictures are fun, so tet's go w/ and option.

$$
\mathbb{Z}_{4} \times \mathbb{Z}_{1}=\langle(1,0),(0,1)\rangle
$$

\downarrow quotient

