Theorem 4.34. The set \mathbb{Z}_{n} is a group under addition $\bmod n$.
Proof. In order to show that the set $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ forms a group under addition mod n, we will verify the four axioms of a group.
(0) Closure: Let $a, b \in \mathbb{Z}_{n}$. By the Division Algorithm, there exists unique $q, r \in \mathbb{Z}$ such that $a+b=n q+r$, where $0 \leq r<n$. This implies that, we have $a+b \equiv r(\bmod n)$. That is, in $\mathbb{Z}_{n}, a+b=r$, which verifies that \mathbb{Z}_{n} is closed (since $0 \leq r<n$).
(1) Associativity: Let $a, b, c \in \mathbb{Z}_{n}$. We need to show that in \mathbb{Z}_{n}, we have

$$
[(a+b)(\bmod n)+c](\bmod n)=[a+(b+c)(\bmod n)](\bmod n) .
$$

By the Division Algorithm, there exists unique $q_{1}, r_{1} \in \mathbb{Z}$ such that $a+b=n q_{1}+r_{1}$, where $0 \leq r_{1}<n$. This implies that $a+b \equiv r_{1}(\bmod n)$. Again by the Division Algorithm, there exists unique $q_{2}, r_{2} \in \mathbb{Z}$ such that $r_{1}+c=n q_{2}+r_{2}$, where $0 \leq r_{2}<n$. Then $r_{1}+c \equiv r_{2}$ $(\bmod n)$, which implies that

$$
[(a+b)(\bmod n)+c](\bmod n) \equiv r_{2} \quad(\bmod n)
$$

On the other hand, by the Division Algorithm, there exists unique $q_{3}, r_{3} \in \mathbb{Z}$ such that $b+c=n q_{3}+r_{3}$, where $0 \leq r_{3}<n$. This implies that $b+c \equiv r_{3}(\bmod n)$. Once again by the Division Algorithm, there exists unique $q_{4}, r_{4} \in \mathbb{Z}$ such that $a+r_{3}=n q_{4}+r_{4}$, where $0 \leq r_{4}<0$. This shows that $a+r_{3} \equiv r_{4}(\bmod n)$. The upshot is that

$$
[a+(b+c)(\bmod n)](\bmod n) \equiv r_{4} \quad(\bmod n)
$$

It remains to show that $r_{2}=r_{4}$. From above, we know $r_{1}=a+b-n q_{1}$ and $r_{2}=r_{1}+c-n q_{2}$, which implies

$$
r_{2}=a+b+c-n\left(q_{1}+q_{2}\right) .
$$

Similarly, we can find

$$
r_{4}=a+b+c-n\left(q_{3}+q_{4}\right) .
$$

It follows that

$$
r_{2}-r_{4}=n\left(q_{1}+q_{2}-q_{3}-q_{4}\right),
$$

which implies that $r_{2}-r_{4}$ is divisible by n. But by Theorem 4.32, it must be the case that $r_{2} \equiv r_{4}(\bmod n)$. Since $0 \leq r_{2}, r_{4}<n$, it must be the case that $r_{2}=r_{4}$, which proves the desired result.
(3) Inverses: Let $a \in \mathbb{Z}_{n}$. Notice that $n-a \in \mathbb{Z}_{n}$. Moreover, in the integers, $a+(n-a)=n$. However, n is equivalent to $0 \bmod n$, and hence $a+(n-a)=0$ in \mathbb{Z}_{n}. This shows that $n-a$ is the (additive) inverse of a in \mathbb{Z}_{n}.

Since Axioms $0-4$ hold, we have shown that \mathbb{Z}_{n} is a group under addition $\bmod n$.

