
Chapter 6

Products and Quotients of Groups

6.1 Products of Groups
In this section, we will discuss a method for using existing groups as building blocks to
form new groups.

Suppose (G,⇤) and (H,�) are two groups. Recall that the Cartesian product of G and
H is defined to be

G ⇥H = {(g,h) | g 2 G,h 2H}
Using the binary operations for the groups G and H , we can define a binary operation on
the set G ⇥H . Define ? on G ⇥H via

(g1,h1) ? (g2,h2) = (g1 ⇤ g2,h1 � h2).
This looks fancier than it is. We’re just doing the operation of each group in the appro-
priate component. It turns out that (G ⇥H,?) is a group.

Theorem 6.1. Suppose (G,⇤) and (H,�) are two groups, where e and e
0 are the identity

elements of G and H , respectively. Then (G ⇥ H,?) is a group, where ? is defined as
above. Moreover, (e, e0) is the identity of G⇥H and the inverse of (g,h) 2 G⇥H is given by
(g,h)�1 = (g�1,h�1).

We refer toG⇥H as the direct product of the groupsG andH . Note that we abbreviate
(g1,h1) ? (g2,h2) = (g1 ⇤ g2,h1 � h2) by (g1,h1)(g2,h2) = (g1g2,h1h2).

There’s no reason we can’t do this for more than two groups. If A1,A2, . . . ,An is a
collection of sets, we define

nY

i=1

Ai := A1 ⇥A2 ⇥ · · ·⇥An.

Each element of
Q

n

i=1Ai is of the form (a1, a2, . . . , an), where ai 2 Ai .

Theorem 6.2. Let G1,G2, . . . ,Gn be groups. For (a1, a2, . . . , an), (b1, b2, . . . , bn) 2
Q

n

i=1Gi , de-
fine

(a1, a2, . . . , an)(b1, b2, . . . , bn) = (a1b1, a2b2, . . . , anbn).

Then
Q

n

i=1Gi , the direct product of G1, . . . ,Gn, is a group under this binary operation.
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Note that each Gi above is called a factor of the direct product. One way to think
about direct products is that we can navigate the product by navigating each factor si-
multaneously but independently.

Theorem 6.3. Let G1,G2, . . . ,Gn be finite groups. Then

|G1 ⇥G2 ⇥ · · ·⇥Gn| = |G1| · |G2| · · · |Gn|.

Theorem 6.4. Let G1,G2, . . . ,Gn be groups. Then |G1 ⇥G2 ⇥ · · ·⇥Gn| is infinite if and only
if at least one |Gi | is infinite.

The following theorem should be clear.

Theorem 6.5. Let G1,G2, . . . ,Gn be groups. Then
Q

n

i=1Gi is abelian if and only if each Gi

is abelian.

If each Gi is abelian, then we may use additive notation. For example, consider Z2⇥Z3
under the operation of addition mod 2 in the first component and addition mod 3 in the
second component. Then

Z2 ⇥Z3 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)}.

Since Z2 and Z3 are cyclic, both groups are abelian, and hence Z2 ⇥Z3 is abelian. In this
case, we will use additive notation in Z2 ⇥Z3. For example,

(0,1) + (1,2) = (1,0)

and
(1,2) + (0,2) = (1,1).

There is a very natural generating set for Z2⇥Z3, namely, {(1,0), (0,1)} since 1 2 Z2 and
1 2 Z3 generate Z2 and Z3, respectively.

Problem 6.6. Draw the Cayley diagram for Z2 ⇥Z3 using {(1,0), (0,1)} as the generating
set. Do you see a subgroup of Z2 ⇥Z3 isomorphic to Z2 in the Cayley diagram? What is
this subgroup? How about a subgroup isomorphic to Z3?

Problem 6.7. Prove that Z2 ⇥Z3 is a cyclic group of order 6 and hence isomorphic to R6.

Let’s play with a few more examples.

Problem 6.8. Consider Z2⇥Z2 under the operation of addition mod 2 in each component.
Find a generating set for Z2 ⇥Z2 and then create a Cayley diagram for this group. What
well-known group is Z2 ⇥Z2 isomorphic to?

Consider the similarities and di↵erences between Z2⇥Z3 and Z2⇥Z2. Both groups are
abelian by Theorem 6.5, but only the former is cyclic. Here’s another exercise.

Problem 6.9. Consider Z2⇥Z4 under the operation of addition mod 2 in the first compo-
nent and addition mod 4 in the second component.
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(a) Using {(1,0), (0,1)} as the generating set, draw the Cayley diagram for Z2 ⇥Z4.

(b) Draw the subgroup lattice for Z2 ⇥Z4.

(c) Show that Z2 ⇥Z4 is abelian but not cyclic.

(d) Argue that Z2 ⇥Z4 cannot be isomorphic to any of D4, R8, and Q8.

The upshot of the previous problem is that there are at least four groups of order
8 up to isomorphism. It turns out that there are exactly five groups of order 8 up to
isomorphism. Three of these groups are non-abelian and two are abelian. Problem 6.24
asks you to find the remaining abelian group of order 8. Unfortunately, we will not
develop the tools necessary to prove that there are not more than 3 non-abelian groups of
order 8 up to isomorphism.

The next theorem tells us how to compute the order of an element in a direct product
of groups.

Theorem 6.10. Suppose G1,G2, . . . ,Gn are groups and let (g1, g2, . . . , gn) 2
Q

n

i=1Gi . If |gi | =
ri <1, then |(g1, g2, . . . , gn)| = lcm(r1, r2, . . . , rn).

Problem 6.11. Find the order of each of the following elements.

(a) (6,5) 2 Z12 ⇥Z7.

(b) (r, i) 2D3 ⇥Q8.

(c) ((1,2)(3,4),3) 2 S4 ⇥Z15.

Problem 6.12. Find the largest possible order of elements in each of the following groups.

(a) Z6 ⇥Z8

(b) Z9 ⇥Z12

(c) Z4 ⇥Z18 ⇥Z15

Theorem 6.13. The group Zm ⇥Zn is cyclic if and only if m and n are relatively prime.

Corollary 6.14. The group Zm ⇥Zn is isomorphic to Zmn if and only if m and n are rela-
tively prime.

The previous results can be extended to more than two factors.

Theorem 6.15. The group
Q

n

i=1Zmi
is cyclic and isomorphic to Zm1m2···mn

if and only if
every pair from the collection {m1,m2, . . . ,mn} is relatively prime.

Problem 6.16. Determine whether each of the following groups is cyclic.

(a) Z7 ⇥Z8

(b) Z7 ⇥Z7
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(c) Z2 ⇥Z7 ⇥Z8

(d) Z5 ⇥Z7 ⇥Z8

Theorem 6.17. Suppose n = p
n1
1 p

n2
2 · · ·p

nr
r , where each pi is a distinct prime number. Then

Zn � Z
p
n1
1
⇥Z

p
n2
2
⇥ · · ·⇥Z

p
nr
r
.

Theorem 6.18. Suppose G and H are two groups. Then G ⇥H �H ⇥G.

Theorem 6.19. Suppose G1 and G2 are groups such that H1  G1 and H2  G2. Then
H1 ⇥H2  G1 ⇥G2.

However, not every subgroup of a direct product has the form above.

Problem 6.20. Find an example that illustrates that not every subgroup of a direct prod-
uct is the direct product of subgroups of the factors.

Theorem 6.21. SupposeG1 andG2 are groups with identities e1 and e2, respectively. Then
{e1}⇥G2 E G1 ⇥G2 and G1 ⇥ {e2}E G1 ⇥G2.

Theorem 6.22. SupposeG1 andG2 are groups with identities e1 and e2, respectively. Then
{e1}⇥G2 � G2 and G1 ⇥ {e2} � G1.

The next theorem describes precisely the structure of finite abelian groups. We will
omit its proof, but allow ourselves to utilize it as needed.

Theorem6.23 (Fundamental Theorem of Finitely Generated Abelian Groups). Every finitely
generated abelian group G is isomorphic to a direct product of cyclic groups of the form

Z
p
n1
1
⇥Z

p
n2
2
⇥ · · ·⇥Z

p
nr
r
⇥Zk

,

where each pi is a prime number (not necessarily distinct). The product is unique up to
rearrangement of the factors.

Note that the number k is called the Betti number. A finitely generated abelian group
is finite if and only if the Betti number is 0.

Problem 6.24. Find all abelian groups up to isomorphism of order 8. Howmany di↵erent
groups up to isomorphism (both abelian and non-abelian) have we seen and what are
they?

Problem 6.25. Find all abelian groups up to isomorphism for each of the following or-
ders.

(a) 16

(b) 12

(c) 25

(d) 30

(e) 60
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6.2 Quotients of Groups
In the previous section, we discussed a method for constructing “larger” groups from
“smaller” groups using a direct product construction. In this section, we will in some
sense do the opposite.

Problem 5.28 hinted that if H  G and we arrange the group table according to the
left cosets of H , then the group table will have checkerboard pattern if and only if H is
normal in G (i.e., the left and right cosets ofH are the same). For example, see the colored
table prior to Problem 5.3 versus the ones you created in Exercises 5.3, 5.4. If we have
the checkerboard pattern in the group table that arises from a normal subgroup, then by
“gluing together” the colored blocks, we obtain a group table for a smaller group that has
the cosets as the elements.

For example, let’s consider K = h�1i  Q8. Problem 5.4 showed us that K is normal
Q8. The left (and right) cosets of K in Q8 are

K = {1,�1}, iK = {i,�i}, jK = {j,�j}, and kK = {k,�k}.

As you found in Problem 5.4, if we arrange the rows and columns of Q8 according to
these cosets, we obtain the following group table.

⇤ 1 �1 i �i j �j k �k
1 1 �1 i �i j �j k �k
�1 �1 1 �i i �j j �k k

i i �i �1 1 k �k �j j

�i �i i 1 �1 �k k j �j
j j �j �k k �1 1 i �i
�j �j j k �k 1 �1 �i i

k k �k j �j �i i �1 1
�k �k k �j j i �i 1 �1

If we consider the 2 ⇥ 2 blocks as elements, it appears that we have a group table for
a group with 4 elements. Closer inspection reveals that this looks like the table for V4. If
the table of 2⇥ 2 blocks is going to represent a group, we need to understand the binary
operation. How do we “multiply” cosets? For example, the table suggest that the coset
jK (colored in red) times the coset iK (colored in blue) is equal to kK (colored in purple)
despite the fact that ji = �k , k. Yet, it is true that the product ji = �k is an element in the
coset kK . In fact, if we look closely at the table, we see that if we pick any two cosets, the
product of any element of the first coset times any element of the second coset will always
result in an element in the same coset regardless of which representatives we chose.

In other words, it looks like we can multiply cosets by choosing any representative
from each coset and then seeing what coset the product of the representatives lies in.
However, it is important to point out that this will only work if we have a checkerboard
pattern of cosets, which we have seen evidence of only happening when the correspond-
ing subgroup is normal.

Before continuing, let’s continue tinkering with the same example. Consider the Cay-
ley diagram for Q8 with generators {i, j,�1} that is given in Figure 6.1(a).



CHAPTER 6. PRODUCTS AND QUOTIENTS OF GROUPS

1 i

kj

�1 �i

�k�j

(a)

K iK

kKjK

(b)

Figure 6.1. The left subfigure shows the Cayley diagram for Q8 with generating set
{i, j,�1}. The right subfigure shows the collapsed Cayley diagram for Q8 according to
the left cosets of K = h�1i.

We can visualize the right cosets of K as the clumps of vertices connected together
with the two-way green arrows. In this case, we are also seeing the left cosets since K is
normal in Q8. If we collapse the cosets onto each other and collapse the corresponding
arrows, we obtain the diagram given in Figure 6.1(b). It is clear that this diagram is
the Cayley diagram for a group that is isomorphic to V4. For reasons we will understand
shortly, this processing of collapsing a Cayley diagram according to the cosets of a normal
subgroup is called the “quotient process.”

Problem 6.26. Let’s see what happens if we attempt the quotient process for a subgroup
that is not normal. Consider H = hsi  D3. In Problem 5.2, we discovered that the left
cosets of H are not the same as the right cosets of H . This implies that H is not normal in
D3. Consider the standard Cayley diagram for D3 that uses the generators r and s. Draw
the diagram that results from attempting the quotient process on D3 using the subgroup
H . Explain why this diagram cannot be the diagram for a group.

The problem that arises in Problem 6.26 is that if the same arrow types (i.e., those
representing the same generator) leaving a coset do not point at elements in the same
coset, attempting the quotient process will result in a diagram that cannot be a Cayley
diagram for a group since we have more than one arrow of the same type leaving a vertex.
In Figure 6.2(a), we illustrate what goes wrong if all the arrows for a generator pointing
out of a coset do not unanimously point to elements in the same coset. In Figure 6.2(b), all
the arrows point to elements in the same coset, and in this case, it appears that everything
works out just fine.

Problem 6.27. In Problem 5.3, we learned that the subgroup K = hri is normal in D3
since the left cosets are equal to the right cosets. Note that this follows immediately from
Theorem 5.32 since [D3 : K] = 2. Draw the diagram that results from performing the
quotient process to D3 using the subgroup K . Does the resulting diagram represent a
group? If so, what group is it isomorphic to?



CHAPTER 6. PRODUCTS AND QUOTIENTS OF GROUPS

g2H g3H

g1H
• • • •

• • • •

�!

g1H

g2H g3H

(a)

g2H

g1H
• • • •

•
• •

•

�!

g1H

g2H

(b)

Figure 6.2. In the left subfigure, blue arrows go from elements of the left coset g1H to
elements of multiple left cosets, which results in ambiguous blue arrows in the collapsed
diagram. This implies that left coset multiplication is not well-defined in this case. In the
right subfigure, blue arrows go from elements of the left coset g1H to elements inside a
unique left coset, which does not result in any ambiguity.

Now, suppose G is an arbitrary group and let H  G. Consider the set of left cosets of
H . We define

(aH)(bH) := (ab)H.

The natural question to ask is whether this operation is well-defined. That is, does the re-
sult of multiplying two left cosets depend on our choice of representatives? More specif-
ically, suppose c 2 aH and d 2 bH . Then cH = aH and dH = bH . According to the
operation defined above, (cH)(dH) = cdH . It better be the case that cdH = abH , otherwise
the operation is not well-defined.

Problem 6.28. Let H = hsi D3. Find specific examples of a,b,c,d 2D3 such that

(aH)(bH) , (cH)(dH)

even though aH = cH and bH = dH .

Theorem 6.29. Let G be a group and letH  G. Then left coset multiplication (as defined
above) is well-defined if and only if H E G.

Theorem 6.30. Let G be a group and letH E G. Then the set of left cosets ofH in G forms
a group under left coset multiplication.

The group from Theorem 6.30 is denoted by G/H , read “G mod H”, and is referred
to as the quotient group (or factor group) of G by H . If G is a finite group, then G/H is
exactly the group that arises from “gluing together” the colored blocks in a checkerboard-
patterned group table. It’s also the group that we get after applying the quotient process
to the Cayley diagram. It’s important to point out once more that this only works properly
if H is a normal subgroup.

Theorem 6.31. Let G be a group and let H E G. Then |G/H | = [G : H]. In particular, if G
is finite, then |G/H | = |G|/ |H |.
Problem6.32. Find the order of the given element in the quotient group. Youmay assume
that we are taking the quotient by a normal subgroup.
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(a) shri 2D4/hri

(b) jh�1i 2Q8/h�1i

(c) 5 + h4i 2 Z12/h4i

(d) (2,1) + h(1,1)i 2 (Z3 ⇥Z6)/h(1,1)i

Problem 6.33. For each quotient group below, describe the group. If possible, state what
group each is isomorphic to. You may assume that we are taking the quotient by a normal
subgroup.

(a) Q8/h�1i

(b) Q8/hii

(c) Z4/h2i

(d) V4/hhi

(e) A4/h(1,2)(3,4), (1,3)(2,4)i

(f) (Z2 ⇥Z2)/h(1,1)i

(g) Z/4Z

(h) S4/A4

(i) (Z4 ⇥Z2)/({0}⇥Z2)

Theorem 6.34. Let G be a group. Then

(a) G/{e} � G

(b) G/G � {e}

Theorem 6.35. For all n 2 N, we have the following.

(a) Sn/An � Z2 (for n � 3)

(b) Z/nZ � Zn

(c) R/nR � {e}

Theorem 6.36. Let G be a group and let H E G. If G is abelian, then so is G/H .

Problem 6.37. Show that the converse of the previous theorem is not true by providing a
specific counterexample.

Problem 6.38. Consider the quotient group (Z4 ⇥Z6)/h(0,1)i.

(a) What is the order of (Z4 ⇥Z6)/h(0,1)i?
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(b) Is the group abelian? Why?

(c) Write down all the elements of (Z4 ⇥Z6)/h(0,1)i.

(d) Does one of the elements generate the group?

(e) What well-known group is (Z4 ⇥Z6)/h(0,1)i isomorphic to?

Theorem 6.39. Let G be a group and let H E G. If G is cyclic, then so is G/H .

Problem 6.40. Show that the converse of the previous theorem is not true by providing a
specific counterexample.

Here are few additional exercises. These ones are a bit tougher.

Problem 6.41. For each quotient group below, describe the group. If possible, state what
group each is isomorphic to. You may assume that we are taking the quotient by a normal
subgroup.

(a) (Z4 ⇥Z6)/h(0,2)i

(b) (Z⇥Z)/h(1,1)i

(c) Q/h1i (the operation on Q is addition)
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