
The aim of argument, or of discussion, should
not be victory, but progress.

Joseph Joubert, French moralist and essayist

Chapter 7

Limits

We are now prepared to dig into limits, which you are likely familiar with from calculus.
However, chances are that you were never introduced to the formal definition.

7.1 Introduction to Limits
Definition 7.1. Let f be a real function. The limit of f as x approaches a is L if the
following two conditions hold:

1. The point a is an accumulation point of Dom(f ), and

2. For every " > 0 there exists a � > 0 such that if x 2 Dom(f ) and 0 < |x � a| < �, then
|f (x)�L| < ".

Notationally, we write this as
lim
x!a

f (x) = L.

Problem 7.2. Why do we require 0 < |x � a| in Definition 7.1?

Problem 7.3. Why do you think we require a to be an accumulation point of the domain
of f ? What happens if a 2 Dom(f ) but a is not an accumulation point of Dom(f )? Such
points are called isolated points of the domain of f .

Notice that if a 2 Dom(f ) is an accumulation point of Dom(f ), then the continuity of
f at a is equivalent to the condition that

lim
x!a

f (x) = f (a),

meaning that the limit of f as x approaches a exists and is equal to the value of f at a.
However, it is important to notice that f may be continuous at a despite the fact that the
limit of f as x approaches a is undefined. This happens when a is an isolated point of the
domain.
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Example 7.4. It should come as no surprise to you that limx!5(3x + 2) = 17. Let’s prove
this using Definition 7.1. First, notice that the default domain of f (x) = 3x + 2 is the set
of real numbers. So, any x-value we choose will be in the domain of the function. Now,
let " > 0. Choose � = "/3. You’ll see in a moment why this is a good choice for �. Suppose
x 2 R such that 0 < |x � 5| < �. We see that

|(3x +2)� 17| = |3x � 15| = 3 · |x � 5| < 3 · � = 3 · "/3 = ".

This proves the desired result.

Example 7.5. Let’s try something a little more di�cult. Let’s prove that limx!3 x2 = 9. As
in the previous example, the default domain of our function is the set of real numbers.
Our goal is to prove that for all " > 0, there exists � > 0 such that if x 2 R such that
0 < |x�3| < �, then |x2 �9| < ". Let " > 0. We need to figure out what � needs to be. Notice
that

|x2 � 9| = |x +3| · |x � 3|.
The quantity |x � 3| is something we can control with �, but the quantity |x + 3| seems to
be problematic.

To get a handle on what’s going on, let’s temporarily assume that � = 1 and suppose
that 0 < |x � 3| < 1. This means that x is within 1 unit of 3. In other words, 2 < x < 4. But
this implies that 5 < x + 3 < 7, which in turn implies that |x + 3| is bounded above by 7.
That is, |x + 3| < 7 when 0 < |x � 3| < 1. It’s easy to see that we still have |x + 3| < 7 even if
we choose � smaller than 1. That is, we have |x + 3| < 7 when 0 < |x � 3| < �  1. Putting
this altogether, if we suppose that 0 < |x � 3| < �  1, then we can conclude that

|x2 � 9| = |x +3| · |x � 3| < 7 · |x � 3|.
This work informs our choice of �, but remember our scratch work above hinged on
knowing that �  1. If "/7  1, we should choose � = "/7. However, if "/7 > 1, the
easiest thing to do is to just let � = 1. Let’s button it all up.

Let " > 0. Choose � =min{1,"/7} and suppose 0 < |x � 3| < �. We see that

|x2 � 9| = |x +3| · |x � 3| < 7 · |x � 3| < 7 · �  "

since

7 · � =

8>><>>:
7, if " > 7
7 · "/7, if "  7.

Therefore, limx!3 x2 = 9, as expected.

Problem 7.6. Prove that lim
x!1

(17x � 42) = �25 using Definition 7.1.

Problem 7.7. Prove that lim
x!2

x3 = 8 using Definition 7.1.

Problem 7.8. Define f : R! R via

f (x) =

8>><>>:
x, if x , 0
17, if x = 0.

Prove that lim
x!0

f (x) = 0 using Definition 7.1.
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Problem 7.9. Define f : R! R via

f (x) =

8>><>>:
1, if x  0
�1, if x > 0.

Using Definition 7.1, prove that lim
x!0

f (x) does not exist.

Problem 7.10. Define f : R! R via

f (x) =

8>><>>:
1, if x 2Q
0, otherwise.

Using Definition 7.1, prove that lim
x!a

f (x) does not exist for all a 2 R.

Like the limits of sequences, limits of functions are unique when they exist.

Problem 7.11. Let f be a real function. Prove that if lim
x!a

f (x) exists, then the limit is
unique.

An ounce of practice is worth more than tons of
preaching.

Mahatma Gandhi, political activist

7.2 Limit Laws
Perhaps not surprisingly, there is a nice connection between limits and sequences.

Problem 7.12. Let f be a real function and let a be an accumulation point of Dom(f ).
Prove that limx!a f (x) exists if and only if for every sequence (pn) in Dom(f ) \ {a} con-
verging to a, the sequence (f (pn)) converges, in which case, limx!a f (x) equals the limit
of the sequence (f (pn)). This is often written as

lim
x!a

f (x) = lim
n!1

f (pn).

In order for limits to be a useful tool, we need to prove a few important facts.

Problem 7.13 (Limit Laws). Let f : A! R and g : B! R be real functions. Prove each of
the following using Definition 7.1 or Problem 7.12.

(a) If c 2 R, then lim
x!a

c = c.

(b) If lim
x!a

f (x) and lim
x!a

g(x) both exist, then

lim
x!a

(f (x)± g(x)) = lim
x!a

f (x)± lim
x!a

g(x).
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(c) If lim
x!a

f (x) and lim
x!a

g(x) both exist, then

lim
x!a

(f (x) · g(x)) = lim
x!a

f (x) · lim
x!a

g(x).

(d) If c 2 R and lim
x!a

f (x) exists, then

lim
x!a

(c · f (x)) = c · lim
x!a

f (x).

(e) If lim
x!a

f (x) and lim
x!a

g(x) both exist and lim
x!a

g(x) , 0, then

lim
x!a

f (x)
g(x)

=
limx!a f (x)
limx!a g(x)

.

(f) If f is continuous at b and lim
x!a

g(x) = b, then

lim
x!a

f (g(x)) = f (lim
x!a

g(x)) = f (b).

The next problem is extremely useful. It allows us to simplify our calculations when
computing limits.

Problem 7.14. Let f and g be real functions with A = Dom(f ) = Dom(g) and let a be an
accumulation point of A. Prove that if there exists an open interval J containing a such
that f (x) = g(x) for all x 2 (J \A) \ {a}, then

lim
x!a

f (x) = lim
x!a

g(x)

provided one of the limits exists.

Vulnerability is not winning or losing; it’s
having the courage to show up and be seen
when we have no control over the outcome.

Brené Brown, storyteller & author
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