A mathematician, like a painter or a poet, is a
maker of patterns. If his patterns are more
permanent than theirs, it is because they are
made with ideas.

Ch apte r 4 G.H. Hardy, mathematician

Standard Topology of the Real Line

In this chapter, we will introduce the notions of open, closed, compact, and connected as
they pertain to subsets of the real numbers. These properties form the underpinnings of
a branch of mathematics called topology (derived from the Greek words tépos, meaning
‘place, location’, and ology, meaning ‘study of’). Topology, sometimes called “rubber sheet
geometry,” is concerned with properties of spaces that are invariant under any continu-
ous deformation (e.g., bending, twisting, and stretching like rubber while not allowing
tearing apart or gluing together). The fundamental concepts in topology are continuity,
compactness, and connectedness, which rely on ideas such as “arbitrary close” and “far
apart”. These ideas can be made precise using open sets.

Once considered an abstract branch of pure mathematics, topology now has applica-
tions in biology, computer science, physics, and robotics. The goal of this chapter is to
introduce you to the basics of the set-theoretic definitions used in topology and to pro-
vide you with an opportunity to tinker with open and closed subsets of the real numbers.
In Chapter 6, we will revisit these concepts when we explore continuous functions.

4.1 Open Sets

Definition 4.1. A set U is called an open set if for every x € U, there exists a bounded
open interval (a,b) containing x such that (a,b) C U.

It follows immediately from the definition that every open set is a union of bounded
open intervals.

Problem 4.2. Determine whether each of the following sets is open. Justify your asser-
tions.

(a) (1,2) (e) (—o0, V2]
(b) (1,00) (f) {4,17,42)
(c) (1,2)U(m,5) (g) {5 1neN)
(d) [1,2] (h) {; IneNju{0}
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As expected, every open interval (i.e., intervals of the form (a,b), (—c0,b), (a,0), or
(—o0,0)) is an open set.

Problem 4.3. Prove that every open interval is an open set.

However, it is important to point out that open sets can be more complicated than a
single open interval.

Problem 4.4. Provide an example of an open set that is not a single open interval.
Problem 4.5. Prove that if U and V are open sets, then

(a) UU YV is an open set, and

(b) UNV is an open set.

According to the next two problems, the union of arbitrarily many open sets is open
while the intersection of a finite number of open sets is open.

Problem 4.6. Prove that if {U,},ca is a collection of open sets, then | J,cp U, is an open
set.

Consider using induction on the next problem.

Problem 4.7. Prove that if {U;}, is a finite collection of open sets for n € N, then ;_; U;
1s an open set.

Problem 4.8. Explain why we cannot utilize induction to prove that the intersection of
infinitely many open sets indexed by the natural numbers is open.

Problem 4.9. Give an example of each of the following.
(a) A collection of open sets {U,},ca such that () ,ca Uy, is an open set.
(b) A collection of open sets {U,}4ea such that (,cp U, is not an open set.

According to the previous problem, the intersection of infinitely many open sets may
or may not be open. So, we know that there is no theorem that states that the intersection
of arbitrarily many open sets is open. We only know for certain that the intersection of
finitely many open sets is open by Problem 4.7.

Any creative endeavor is built on the ash heap of
failure.

Michael Starbird, mathematician

41



CHAPTER 4. STANDARD TOPOLOGY OF THE REAL LINE

4.2 Accumulation Points and Closed Sets

Definition 4.10. Suppose A C R. A point p € R is an accumulation point of A if for every
bounded open interval (a, b) containing p, there exists a point q € (a,b) N A such that g = p.

Notice that if p is an accumulation point of A, then p may or may not be in A. Loosely
speaking, p is an accumulation point of a set A if there are points in A arbitrarily close to
p. That is, if we zoom in on p, we should always see points in A nearby. If A is a set, the

set of accumulation points of A is sometimes denoted by .

Problem 4.11. Consider the open interval I = (1,2). Prove each of the following.
(a) The points 1 and 2 are accumulation points of I.
(b) If p €I, then p is an accumulation point of I.
(c) If p<1or p>2,then pisnot an accumulation point of I.

Problem 4.12. A point p is an accumulation point of the intervals (a,b), (a,b], [4,b), and
[a,b] if and only if p € [a, b].

Problem 4.13. Prove that the point p = 0 is an accumulation point of A = {1 | n € N}. Are
there any other accumulation points of A?

Problem 4.14. For each set A, find the set of accumulation points A’. In each case, sketch
a proof to justify your assertion.

(a) A={-17,1,1,42)
(b) A=1[1,3)U(3,5)

(c) A=[1,3)U{17)

(d) A=R
() A=Q
f) A=7Z

Problem 4.15. Prove that if A is finite, then A has no accumulation points. That is, if A is
finite, then A’ = 0.

Problem 4.16. State the contrapositive of the previous problem.
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The upshot of the previous problem is that any set with an accumulation point must
be infinite.

Problem 4.17. Determine whether the converse of Problem 4.16 is true or false. Justify
your assertion.

Problem 4.18. Provide an example of a set A with exactly two accumulation points.

Problem 4.19. Given sets A and B, determine whether each of the following is true or
false. If the statement is true, prove it. Otherwise, provide a counterexample.

(a) If p is an accumulation point of ANB, then p is an accumulation point of both A and
B.

(b) If p is an accumulation point of AU B, then p is an accumulation point of A or p is
an accumulation point of B.

Definition 4.20. A set A C R is called closed if A contains all of its accumulation points.

That is, a set A is closed if and only if A" C A. Note that if a set A has no accumulation
points, then it is vacuously closed.

Problem 4.21. Determine whether each of the sets in Problem 4.2 is closed. Justify your
assertions.

The upshot of Parts (i) and (1) of Problems 4.2 and 4.21 is that R and () are both open
and closed. It turns out that these are the only two subsets of the real numbers with this
property. One issue with the terminology that could potentially create confusion is that
the open interval (—oo, ) (i.e., the real numbers R) is both an open and a closed set.

Problem 4.22. Provide an example of each of the following. You do not need to prove
that your answers are correct.

(a) A set that is open but not closed.
(b) A set that is closed but not open.
(c) A set that is neither open nor closed.

Another potentially annoying feature of the terminology illustrated by Problem 4.22
is that if a set is not open, it may or may not be closed. Similarly, if a set is not closed, it
may or may not be open. That is, open and closed are not opposites of each other.

The next result justifies referring to [a,b] as a closed interval.

Problem 4.23. Prove that every interval of the form [4,b], (-0, 1], [4,0), Or (—00,00) is a
closed set.

Problem 4.24. Prove that if A is finite, then A is a closed set.

Problem 4.25. Prove that Z is a closed set.
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Despite the fact that open and closed are not opposites of each other, there is a nice
relationship between open and closed sets in terms of complements.

Problem 4.26. Let U C R. Prove that U is open if and only if U is closed.
Problem 4.27. Prove that if A and B are closed sets, then
(a) AUB s a closed set, and
(b) AN Bis a closed set.
The next two problems are analogous to Problems 4.6 and 4.7.

Problem 4.28. Prove that if {A,},ca is a collection of closed sets, then () ,c4 Ay is a closed
set.

Problem 4.29. Prove that if {A;}}; is a finite collection of closed sets for n € N, then
UL, A, is a closed set.

Problem 4.30. Provide an example of a collection of closed sets {A,},ea such that | J,cp Ag
is not a closed set.

Problem 4.31. Determine whether each of the following sets is open, closed, both, or
neither.

(e) Z=(0,1)NQ

Problem 4.32. Prove or provide a counterexample: Every non-closed set has at least one
accumulation point.

Getting better is not pretty. To get good we have
to be down to struggle, seek out challenges,
make some mistakes, to train ugly.

Trevor Ragan, thelearnerlab.com
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4.3 Compact and Connected Sets

We now introduce three special classes of subsets of R: compact, connected, and discon-
nected.

Definition 4.33. A set K C R is called compact if K is both closed and bounded.

It is important to point out that there is a more general definition of compact in an ar-
bitrary topological space. However, using our notions of open and closed, it is a theorem
that a subset of the real line is compact if and only if it is closed and bounded.

Problem 4.34. Determine whether each of the following sets is compact. Briefly justify
your assertions.

(a) [0,1)U[2,3] (8) Z

(b) [0,1)U(1,2] (h) {%|neN}

(c) [0,1)U[1,2] (i) [0,1]U{l+1|neN}
(d) R (j) (17,42}

(e) Q (k) {17}

(f) R\Q (1) 0

Problem 4.35. Is every finite set compact? Justify your assertion.

The next problem says that every nonempty compact set contains its greatest lower
bound and its least upper bound. That is, every nonempty compact set attains a minimum
and a maximum value.

Problem 4.36. Prove that if K is a nonempty compact subset of R, then sup(K),inf(K) € K.

Definition 4.37. Let A be a subset of real numbers and let &/ = {U,},ca be a collection of
open subsets of R. Then I/ is an open cover of A if A C(J,cp U,. An open subcover V of
an open cover U of A is a subcollection of &/ whose elements form an open cover of A. If
V is an open subcover of U consisting of a finite number of open sets, then we say that V
is a finite open subcover.

For example, the collections U = {(-n,n) | n € N} and U, = {(n,n+ 2) | n € Z} are each
open subcovers of the real numbers. The collection V, = {(-n,n)|n e Nand n > 17} is an
example of an open subcover of i/;. Does U/; have an example of a finite open subcover?
Does U, have an example of a proper open subcover (i.e., not the entire collection)?

Problem 4.38. Let A =[0,1], U, = {(-3,%)}, and U, = {(—%,l)} U {(—% +1, % +1)}. It turns
out that both ¢/, and U/, are open covers of A.

(a) If possible, find a finite open subcover of ;. If this is not possible, explain why.

(b) If possible, find a finite open subcover of U,. If this is not possible, explain why.
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Problem 4.39. Let A=(0,1), V; ={(-%,5)},and V, = {(%, 1)}. It turns out that both V; and
V), are open covers of A.

(a) If possible, find a finite open subcover of V. If this is not possible, explain why.
(b) If possible, find a finite open subcover of V,. If this is not possible, explain why.

Problem 4.40. Prove that a set A is compact if and only if every open cover U of A has a
finite open subcover.

The characterization of compact in given in the previous problem is actually the stan-
dard definition of compact used in topology. If we had used this as our definition, we
could have proved that a set is compact if and only if it is closed and bounded. This the-
orem is known as the Heine-Borel Theorem. Instead we took this as our definition to
simplify things slightly.

Definition 4.41. A set A C R is disconnected if there exists two disjoint open sets U;
and U, such that AN U; and AN U, are nonempty but A C U; U U, (equivalently, A =
(ANU;)U(ANU,)). If a set is not disconnected, then we say that it is connected.

In other words, a set is disconnected if it can be partitioned into two nonempty sub-
sets such that each subset does not contain points of the other and does not contain any
accumulation points of the other. Showing that a set is disconnected is generally easier
than showing a set is connected. To prove that a set is disconnected, you simply need
to exhibit two open sets with the necessary properties. However, to prove that a set is
connected, you need to prove that no such pair of open sets exists.

Problem 4.42. Determine whether each of the sets in Problem 4.34 is is connected or
disconnected. Briefly justify your assertions.

Problem 4.43. Prove that if a € R, then {a} is connected.

The next proof is harder than you might expect. Consider a proof by contradiction
and try to make use of the Completeness Axiom.

Problem 4.44. Prove that every closed interval [a, b] is connected.

It turns out that every connected set in R is either a singleton or an interval. We have
not officially proved this claim, but we do have the tools to do so. Feel free to try your
hand at proving this fact.
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If you learn how to learn, it’s the ultimate meta
skill and I believe you can learn how to be
healthy, you can learn how to be fit, you can
learn how to be happy, you can learn how to
have good relationships, you can learn how to
be successful. These are all things that can be
learned. So if you can learn that is a trump card,
it’s an ace, it’s a joker, it’s a wild card. You can
trade it for any other skill.

Naval Ravikant, entrepreneur & investor
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