
Chapter 6

Di↵erentiation

It’s time for calculus!

Definition 6.1. Let f : A! R be a function and let a 2 A. For real number D, we say that
f has derivative D at the point a if the following two conditions hold:

1. The point a is an accumulation point of the domain of f .

2. If S is an open interval containing D, then there is an open interval T containing a
such that if t 2 T , t , a, and t is in the domain of f , then

f (t)� f (a)
t � a 2 S.

In this case, we say that f is di↵erentiable at a. If f does indeed have a derivative at some
points in its domain, then the derivative of f is the function denoted by f 0, such that for
each number x at which f is di↵erentiable, f 0(x) is the derivative of f at x.

Note that the definition of derivative automatically excludes the kind of behavior we
saw with continuous functions, where a function defined only at a single point was con-
tinuous.

Exercise 6.2. Explain why any function defined only on Z cannot have a derivative.

Exercise 6.3. Find and prove a formula for the derivative of f (x) = 3.

Problem 6.4. Find and prove a formula for the derivative of g(x) = 2x � 5.
The following problem provides an alternative definition for the derivative.

Problem 6.5. Let f : A! R be a function and let a 2 A. Prove that f has derivative D at
the point a if and only if the following two conditions hold:

1. The point a is an accumulation point of the domain of f .

2. If ✏ > 0, then there exists � > 0 such that if t is in the domain of f and |t�a| < �, then
�����
f (t)� f (a)

t � a �D
����� < ✏.
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CHAPTER 6. DIFFERENTIATION

Problem 6.6. Find the derivative of h(x) = x2 � x +1 at x = 2.

Problem 6.7. Find the derivative of h(x) = x2 + ax + b for any a,b 2 R.

Problem 6.8. If f is di↵erentiable at x and c 2 R, show that the function cf also has a
derivative at x and (cf )0(x) = cf 0(x).

Problem 6.9. If f and g are di↵erentiable at x, show that the function f + g also has a
derivative at x and (f + g)0(x) = f 0(x) + g 0(x).

We now pause our regularly scheduled program for a short discussion of limits. Many
of you have had a burning desire to utilize the limits that you are familiar with from
calculus and have felt like you were working with one hand tied behind your back. Partly
to satisfy your desires and partly to speed things up in light of our transition to remote
instruction, lets dig into limits for a bit.

Definition 6.10. Let f : A! R be a function. Then the limit of f as x approaches a is L if
the following two conditions hold:

1. The point a is an accumulation point of A, and

2. For every ✏ > 0 there exists a � > 0 such that if x 2 A and 0 < |x � a| < �, then
|f (x)�L| < ✏.

Notationally, we write this as
lim
x!a

f (x) = L.

Exercise 6.11. Why do we require 0 < |x � a| in Definition 6.10?

Example 6.12. It should come as no surprise to you that limx!5(3x +2) = 17. Let’s prove
this using Definition 6.10. First, notice that the default domain of f (x) = 3x + 2 is the set
of real numbers. So, any x-value we choose will be in the domain of the function. Now,
let ✏ > 0. Choose � = ✏/3. You’ll see in a moment why this is a good choose for �. Suppose
x 2 R such that 0 < |x � 5| < �. We see that

|(3x +2)� 17| = |3x � 15| = 3 · |x � 5| < 3 · � = 3 · ✏/3 = ✏.

This proves the desired result.

Example 6.13. Let’s try something a little more di�cult. Let’s prove that limx!3 x2 = 9.
As in the previous example, the default domain of our function is the set of real numbers.
Our goal is to prove that for all ✏ > 0, there exists � > 0 such that if x 2 R such that
0 < |x�3| < �, then |x2 �9| < ✏. Let ✏ > 0. We need to figure out what � needs to be. Notice
that

|x2 � 9| = |x +3| · |x � 3|.
The quantity |x � 3| is something we can control with �, but the quantity |x + 3| seems to
be problematic.
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To get a handle on what’s going on, let’s temporarily assume that � = 1 and suppose
that 0 < |x � 3| < 1. This means that x is within 1 unit of 3. In other words, 2 < x < 4. But
this implies that 5 < x + 3 < 7, which in turn implies that |x + 3| is bounded above by 7.
That is, |x + 3| < 7 when 0 < |x � 3| < 1. It’s easy to see that we still have |x + 3| < 7 even if
we choose � smaller than 1. That is, we have |x + 3| < 7 when 0 < |x � 3| < �  1. Putting
this altogether, if we suppose that 0 < |x � 3| < �  1, then we can conclude that

|x2 � 9| = |x +3| · |x � 3| < 7 · |x � 3|.

This work informs our choice of �, but remember our scratch work above hinged on
knowing that �  1. If ✏/7  1, we should choose � = ✏/7. However, if ✏/7 > 1, the
easiest thing to do is to just let � = 1. Let’s button it all up.

Let ✏ > 0. Choose � =min{1,✏/7} and suppose 0 < |x � 3| < �. We see that

|x2 � 9| = |x +3| · |x � 3| < 7 · |x � 3| < 7 · �  ✏

since

7 · � =

8>><>>:
7, if ✏ > 7
7 · ✏/7, if ✏  7.

Therefore, limx!3 x2 = 9, as expected.

Problem 6.14. Prove that limx!1(17x � 42) = �25 using Definition 6.10.

Problem 6.15. Prove that limx!2 x3 = 8 using Definition 6.10.

Problem 6.16. Define f : R! R via

f (x) =

8>><>>:
x, if x , 0
17, if x = 0.

Using Definition 6.10, prove that limx!0 f (x) = 0.

Problem 6.17. Define f : R! R via

f (x) =

8>><>>:
1, if x  0
�1, if x > 0.

Using Definition 6.10, prove that limx!0 f (x) does not exist.

Problem 6.18. Define f : R! R via

f (x) =

8>><>>:
1, if x 2Q
0, otherwise.

Using Definition 6.10, prove that limx!a f (x) does not exist for all a 2 R.
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The definition of a function f being continuous at x = a looks awfully similar to the
definition of the limit of f as x approaches a. Let’s explore this a bit.

Problem 6.19. Explain the similarities and di↵erences between the definitions of con-
tinuity at x = a versus the limit as x approaches a. State a theorem about continuity
involving limits.

In order for limits to be a useful tool, we need to prove a few important facts.

Problem 6.20 (Limit Laws). Let f : A! R and g : B! R be functions. Prove each of the
following using Definition 6.10.

(a) If limx!a f (x) exists, then the limit is unique.

(b) If c 2 R, then limx!a c = c.

(c) If limx!a f (x) and limx!a g(x) both exist, then

lim
x!a

(f (x)± g(x)) = lim
x!a

f (x)± lim
x!a

g(x).

(d) If limx!a f (x) and limx!a g(x) both exist, then

lim
x!a

(f (x) · g(x)) = lim
x!a

f (x) · lim
x!a

g(x).

(e) If c 2 R and limx!a f (x) exists, then

lim
x!a

(c · f (x)) = c · lim
x!a

f (x).

(f) If limx!a f (x) and limx!a g(x) both exist and limx!a g(x) , 0, then

lim
x!a

f (x)
g(x)

=
limx!a f (x)
limx!a g(x)

.

(g) If f is continuous at b and limx!a g(x) = b, then

lim
x!a

f (g(x) = f (lim
x!a

g(x)) = f (b).

The next problem is extremely useful. It allows us to simplify our calculations when
computing limits.

Problem 6.21. Let f : A ! R and g : A ! R be functions and let a be an accumulation
point of A. If there exists an open interval S such that f (x) = g(x) for all x 2 (S \A) \ {a},
then

lim
x!a

f (x) = lim
x!a

g(x)

provided one of the limits exists.

Let’s return to derivatives.
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Problem 6.22. Using Problem 6.5 and Definition 6.10, state a theorem for derivatives
that involves limits.

We now return to our regularly scheduled program.

The next problem tells us that di↵erentiability implies continuity.

Problem 6.23. Using Problem 6.22, show that if f has a derivative at x = a, then f is also
continuous at x = a.

The next problems are the well-known Product and Quotient Rules for Derivatives.
You will need to use Problem 6.23 in their proofs.

Problem 6.24. Suppose f and g are di↵erentiable at x. Using Problem 6.22, prove each
of the following:

(a) The function f g is di↵erentiable at x. Moreover, its derivative function is given by

(f g)0(x) = f 0(x)g(x) + f (x)g 0(x).

(b) The function f /g is di↵erentiable at x provided g 0(x) , 0. Moreover, its derivative
function is given by  

f
g

!0
(x) =

f 0(x)g(x)� f (x)g 0(x)
[g(x)]2

.

Definition 6.25. Let f : A ! R be a function and let a 2 A. The non-vertical line L is
tangent to the function f at the point P = (a,b) means that:

1. a is an accumulation point of the domain of f ,

2. P is a point of L, and

3. if A and B are non-vertical lines containing P with the line L between them (except
at P), then there are two vertical lines H and K with P between them such that if Q
is a point of f between H and K which is not P, then Q is between A and B.

If L is tangent to f at P, we say that L is a tangent line to f at x = a.

In the previous definition we write that we have three distinct lines, A, B, and L with
L between A and B (except at P). By this we mean that for any point l on L (except P)
there is a point ↵ on A and a point � on B so that either ↵ is below l which is below � or
that � is below l which is below ↵.

Exercise 6.26. Try to draw a picture that captures the definition of tangent line. Your
picture should include f , a, f (a), P, L, A, B, H , K , Q, ↵, and �.

Problem 6.27. Let f : A! R be a function and let a 2 A such that f has a tangent line at
x = a. Prove that f does not have two tangent lines at the point (a, f (a)).
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Problem 6.28. Define f : R! R via f (x) = |x|.
(a) Prove that f is continuous on all at all points in its domain.

(b) Prove that f has a (non-vertical) tangent line at all points in its domain except x = 0.

Problem 6.29. Use the definition of tangent to show that if f is a function whose domain
includes (�1,1), and for each number x 2 (�1,1), �x2  f (x)  x2, then the x-axis is tangent
to f at the point (0,0).

Problem 6.30. Let f : A! R be a function and let a 2 A. Prove that f has a derivative at
x = a if and only if f has a non-vertical tangent line at the point (a, f (a)).

The upshot of Problems 6.27 and 6.30 is that derivatives are unique when they exist.

Problem 6.31. Let f : A! R be a function and let a 2 A and suppose f has a derivative
at x = a. Explain why f 0(a) is the slope of the line tangent to f at the point (a, f (a)).

In light of Problem 6.30, if a function f does not have a tangent line or has a vertical
tangent line at x = a, then f is not di↵erentiable at x = a. Note that Problem 6.28 shows
us that a function f that is is continuous at x = amay or may not be di↵erentiable at x = a.
This problem also illustrates that a function f and its derivative f 0 might not have the
same domain.

We probably should have done the next two problems sooner, but now is as good a
time as any.

Problem 6.32. Define f : R ! R via f (x) = c for some constant c 2 R. Prove that f is
di↵erentiable on R and f 0(x) = 0 for all x 2 R.
Problem 6.33. Define f : R! R via f (x) =mx + b for some constants m,b 2 R. Prove that
f is di↵erentiable and f 0(x) =m for all x 2 R.

In the previous two problems, note that if we restrict the domain of the functions to
a closed interval [a,b], then we can conclude that we get the expected derivatives for all
x 2 (a,b).
Problem 6.34. Define f : R! R via

f (x) =

8>><>>:
x, if x 2Q
0, otherwise.

Show that f is continuous at x = 0, but not di↵erentiable at x = 0.

The next problem is sure to make your head hurt.

Problem 6.35. Define g : R! R via

g(x) =

8>><>>:
0, if x 2Q
1, otherwise.

Now, define f : R! R via f (x) = x2g(x). Determine where f is di↵erentiable.
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The next result tells us that if a di↵erentiable function attains a maximum value at
some point in an open interval contained in the domain of the function, then the deriva-
tive is zero at that point. In a calculus class, we would said that di↵erentiable functions
attain local maximums at critical numbers.

Problem 6.36. Let f : A ! R be a function such that [a,b] ✓ A, f 0(c) exists for some
c 2 (a,b), and f (c) � f (x) for all x 2 (a,b). Prove that f 0(c) = 0.

Problem 6.37. Let f : A! R be a function such that f 0(c) = 0 for some c 2 A. Does this
imply that there exists an open interval (a,b) such that either f (x) � f (c) or f (x)  f (c) for
all x 2 (a,b)? If so, prove it. Otherwise, provide a counterexample.

The next problem asks you to prove a result called Rolle’s Theorem.

Problem 6.38 (Rolle’s Theorem). Let f : A! R be a function such that [a,b] ✓ A. If f is
continuous on [a,b], di↵erentiable on (a,b), and f (a) = f (b), then prove that there exists a
point c 2 (a,b) such that f 0(c) = 0.1

We can use Rolle’s Theorem to prove the next result, which is the well-known Mean
Value Theorem.

Problem 6.39 (Mean Value Theorem). Let f : A! R be a function such that [a,b] ✓ A. If
f is continuous on [a,b] and di↵erentiable on (a,b), then prove that there exists a point
c 2 (a,b) such that

f 0(c) =
f (b)� f (a)

b � a .2

Problem 6.40. Let f : A ! R be a function such that [a,b] ✓ A. If f is continuous on
[a,b] and di↵erentiable on (a,b) such that f 0(x) = 0 for all x 2 (a,b), then prove that f is
constant over [a,b].3

Problem 6.41. Let f : A! R and g : A! R such that [a,b] ✓ A. Prove that if f 0(x) = g 0(x)
for all x 2 (a,b), then there exists C 2 R such that f (x) = g(x) +C.

Problem 6.42. Is the converse of the previous problem true? If so, prove it. Otherwise,
provide a counterexample.

1Hint: First, apply the Extreme Value Theorem to f and �f to conclude that f attains both a maximum and
minimum on [a,b]. If both the maximum and minimum are attained at the end points of [a,b], then the
maximum and minimum are the same and thus the function is constant. What does Problem 6.32 tell us
in this case? But what if f is not constant over [a,b]? Try using Problem 6.36.

2Hint: Cleverly define the function g(x) = f (x)� f (b)�f (a)
b�a (x � a). Is g continuous on [a,b]? Is g di↵erentiable

on (a,b)? Can we apply Rolle’s Theorem to g using the interval [a,b]? What can you conclude? Magic!
3Hint: Try applying the Mean Value Theorem to [a, t] for every t 2 (a,b].
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