
Chapter 7

Integration

Unlike with di↵erentiation, we will need a number of auxiliary definitions for beginning
integration.

Definition 7.1. A set of points P = {t0, t1, . . . , tn} is a partition of the closed interval [a,b] if
a = t0 < t1 < · · · tn�1 < tn = b. If ti � ti�1 = b�a

n for all i, we say that the partition is a regular
partition of [a,b]. In this case, we may use the notation �t := ti � ti�1.
Exercise 7.2. Give some partitions, regular and not regular, of [0,1], [2,4], and [�1,0].
Definition 7.3. We say that a function is bounded if it has bounded image set.

Important! For the next four definitions, we assume that f is a bounded function with
domain the closed interval [a,b].

Definition 7.4. Let f be a bounded function with domain [a,b] and let {t0, t1, . . . , tn} be a
partition of [a,b]. We say that any sum S of the form

S =
nX

i=1

f (xi)(ti � ti�1),

where xi 2 [ti�1, ti] is a Riemann sum for f on [a,b].

Definition 7.5. Let f be a bounded function with domain [a,b] and let P = {t0, t1, . . . , tn}
be a partition of [a,b]. For each i 2 {1,2, . . . ,n}, define Mi := sup{f (x) | x 2 [ti�1, ti]}. We say
that the sum

UP(f ) :=
nX

i=1

Mi(ti � ti�1),

is the upper Riemann sum for f with partition P.

Definition 7.6. Let f be a bounded function with domain [a,b] and let P = {t0, t1, . . . , tn}
be a partition of [a,b]. For each i 2 {1,2, . . . ,n}, define mi := inf{f (x) | x 2 [ti�1, ti]}. We say
that the sum

LP(f ) :=
nX

i=1

mi(ti � ti�1),

is the lower Riemann sum for f with partition P.
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CHAPTER 7. INTEGRATION

Exercise 7.7. Draw pictures that capture the concepts of upper and lower Riemann sums.

Contrary to the name, upper and lower Riemann sums are not always Riemann sums.

Problem 7.8. Give an example of an interval [a,b], partition P, and bounded function f
such that Up(f ) is not a Riemann sum.

Problem 7.9. Define f : [0,1]! R via

f (x) =

8>><>>:
0, x 2 (0,1]
1, x = 0.

(a) Show that UP(f ) > 0 for all partitions of [0,1].

(b) Show that for any positive number ✏ there is a partition P✏ such that UP✏(f ) < ✏.

(c) Fully describe all lower sums of f on [0,1].

Problem 7.10. Define f : [0,1] ! R via f (x) = x. For each n 2 N, let Pn be the regular
partition of [0,1] given by

n
0, 1n ,

2
n , . . . ,

n�1
n ,1

o
.

(a) Compute UP5(f ).

(b) Give a formula for UPn(f ).
1

(c) Compute LP5(f ).

(d) Give a formula for LPn(f ).

Problem 7.11. Suppose that f is a bounded function on [a,b] with lower bound m and
upper bound M . Show that for any partition P of [a,b], UP(f )  M(b � a) and LP(f ) �
m(b � a).

Problem 7.12. Suppose that f is a bounded function on [a,b] and P is a partition of [a,b].
Show that LP(f ) UP(f ).

One consequence of Problem 7.11 is that the set of all upper, respectively lower, sums
of f over [a,b] is a bounded point set. This implies that if f is a bounded function on
[a,b], then the following supremum and infinum exist:

inf{UP(f ) | P is a partition of [a,b]}

sup{LP(f ) | P is a partition of [a,b]}
This leads to the following definition.

1Recall that the sum
Pk

i=1 i =
k(k+1)

2 .
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Definition 7.13. Let f be a bounded function with domain [a,b]. The upper integral of f
from a to b is defined via

Z b

a
f := inf{UP(f ) | P is a partition of [a,b]}.

Similarly, the lower integral of f from a to b is defined via

Z b

a
f := sup{LP(f ) | P is a partition of [a,b]}.

Problem 7.14. Compute the upper and lower integrals for the function in Problem 7.9.

Problem 7.15. Define f : R! R via

f (x) =

8>><>>:
1, if x 2Q
0, if x 2 R \Q

Show that
Z 1

0
f <

Z 1

0
f .

Definition 7.16. If P and Q are partitions of [a,b] such that P ✓Q, then we we say that Q
is a refinement of P, or that Q refines P.

Problem 7.17. Let f be a bounded function with domain [a,b]. Prove that if P and Q are
partitions of [a,b] such thatQ is a refinement of P, then LP(f )  LQ(f ) andUP(f ) �UQ(f ).

Problem 7.18. Suppose f is a bounded function on [a,b]. Use the previous problem to
prove that

Z b

a
f 

Z b

a
f .

Problem 7.19. Suppose f is continuous on [a,b] such that f (x) � 0 for all x 2 [a,b] and
that for some z 2 [a,b], f (z) > 0. Explain why

R b
a
f exists and then show that

R b
a
f > 0.

Definition 7.20. Let f be a bounded function with domain [a,b]. We say that f is (Rie-
mann) integrable on [a,b] if

Z b

a
f =

Z b

a
f .

If f is integrable on [a,b], then the common value of the upper and lower integrals is
called the (Riemann) integral of f on [a,b], which we denote via

Z b

a
f or

Z b

a
f (x) dx.
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Technically, we have defined the Darboux integral, with Riemann integrals coming
from so-called Riemann sums. The two notions can be proved to be equivalent.

Problem 7.21. Give an example of a function f and an interval [a,b] for which we knowR b
a
f does not exist.

Problem 7.22. Is the function in Problem 7.9 integrable over [0,1]? If so, determine the
value of the corresponding integral. If not, explain why.

There are so many facts about integrals, and unfortunately, we do not have time to
prove them all! Nonetheless, we will hit some of the key results.

Problem 7.23. Prove that every constant function is integrable over every interval [a,b].

The following theorem is a useful characterization of when a function is integrable
over a closed interval.

Problem 7.24. Suppose f is a bounded function on [a,b]. Then f is (Riemann) integrable
if and only if for every ✏ > 0, there exists a partition P of [a,b] such that UP(f )�LP(f ) < ✏.

It is important to recognize the the previous problem provides us with a technique for
determining whether a function is integrable over a closed interval, but does not neces-
sarily help us with determining the value of a particular integral.

Problem 7.25. Define f : R! R defined via f (x) = x. Prove that f is integrable on [0,1]
and compute the value of the integral.2

The next sets of theorems will vastly expand our repertoire of functions known to be
integrable. First, we need a few definitions, which resemble the corresponding concepts
we defined for sequences in Chapter 3.

Definition 7.26. A function f is (strictly) increasing if for each pair of points x and y in
the domain of f satisfying x < y, we have f (x) < f (y). The function is nondecreasing if
under the same assumptions we have f (x)  f (y). The notions of (strictly) decreasing and
nonincreasing are defined analogously. We say that f is a monotonic function if f is either
nondecreasing or nonincreasing.

Problem 7.27. Prove that if f is a bounded monotonic function on [a,b], then f is inte-
grable on [a,b].

Problem 7.28. Prove that each of the following exist. Do you know the value of any of
these integrals knowing what we know now and perhaps some well-known area formu-
las?

(a)
Z 2

1
x2 dx

(b)
Z 17

1
e�x dx

2You need to use the tools we currently have at our disposal.
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(c)
Z 1

0

p
1� x2 dx

(d)
Z 1

0

p
1+ x4 dx

The next problem tells us that the integral respects scalar multiplication and sums
and di↵erences of integrable functions.

Problem 7.29. Suppose f and g be integrable on [a,b] and let c 2 R. Prove each of the
following:

(a) The function cf is integrable on [a,b] and
Z b

a
cf = c

Z b

a
f .

(b) The function f + g is integrable on [a,b] and
Z b

a
(f + g) =

Z b

a
f +

Z b

a
g .3

(c) The function f � g is integrable on [a,b] and
Z b

a
(f � g) =

Z b

a
f �

Z b

a
g .4

Unfortunately, products of integrable functions are not well behaved.

Problem 7.30. Find two functions f and g which are integrable on [0,1] such that f g is
also integrable on [0,1] but  Z 1

0
f

! Z 1

0
g

!
,
Z 1

0
f g.

Problem 7.31. Assume that [a,b] is a closed interval and suppose f is integrable on [a,c]
and [c,b] for c 2 (a,b). Show that f is integrable on [a,b] and that

Z b

a
f =

Z c

a
f +

Z b

c
f .

Problem 7.32. Suppose f is integrable on [a,b]. Prove that for every c 2 R, the function g
defined via g(x) = f (x � c) is integrable on [a+ c,b + c] and

Z b

a
f (x) dx =

Z b+c

a+c
f (x � c) dx.

Let’s turn our attention to continuous functions.

Problem 7.33. Suppose f is continuous on [a,b]. Prove that for every ✏ > 0, there exists a
partition P = {t0 = a, t1, . . . , tn�1, tn = b} of [a,b] such that for each 1  i  n, if u,v 2 [ti�1, ti],
then |f (u)� f (v)|  ✏.
3Proving this one is much harder than it looks!
4Use parts (a) and (b) to prove this one.
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Problem 7.34. Prove that if f is continuous on [a,b], then f is integrable on [a,b].

Problem 7.35. Is the converse of the previous problem true? If so, prove it. Otherwise,
provide a counterexample.

Definition 7.36. If f is integrable on [a,b], then we define

Z a

b
f = �

Z b

a
f and

Z a

a
f = 0.

The next result is often referred to as theMean Value Theorem for Integrals. Do you see
why?

Problem 7.37 (Mean Value Theorem for Integrals). Suppose f is continuous on [a,b].
Prove that there exists c 2 [a,b] such that

Z b

a
f = f (c)(b � a).

Can you draw a picture to capture the essence of this theorem?

The next two problems are the crowning achievement of calculus and of this course.
Collectively, these two problems are known as the Fundamental Theorem of Calculus.

Problem 7.38 (Fundamental Theorem of Calculus, Part 1). Suppose f is continuous on
[a,b] and define F : [a,b]! R via

F(x) =
Z x

a
f .

Prove that for each c 2 [a,b], F is di↵erentiable at c and F 0(c) = f (c).

Problem 7.39 (Fundamental Theorem of Calculus, Part 2). Suppose f is a function on
[a,b] such that f is di↵erentiable at each point of [a,b], and the function f 0 is continuous
at each point in [a,b]. Then show that

Z b

a
f 0 = f (b)� f (a).

It is important to point out that the function we are integrating in Problem 7.39 needs
to be continuous. Moreover, this functionmust be some other function’s derivative. Given
f 0 in Problem 7.39, there is an entire family of functions that have the same derivative as
f , each di↵ering by a constant, according to Problem 6.41. Each of the functions in this
family is referred to as antiderivative of f 0 and any one of them can be used to computeR b
a
f 0 using the Fundamental Theorem of Calculus.
The crux of using the Fundamental Theorem of Calculus boils down to finding an

antiderivative of the function you are integrating. Some functions do not have nice an-
tiderivatives! For example, in part (d) of Problem 7.28, we argued that the function give

39



CHAPTER 7. INTEGRATION

by f (x) =
p
1+ x4 is integrable on [0,1]. However, this function does not have an an-

tiderivative that you would recognize. Try asking WolframAlpha for the antiderivative of
f (x) =

p
1+ x4 and see what you get.

Most functions you are familiar with are called elementary functions. Loosely speaking,
a function is an elementary function if it is equal to a sum, product, and/or composition
of finitely many polynomials, rational functions, trigonometric functions, exponential
functions, and their inverse functions. These are the functions you typically encounter in
high school, precalculus, and calculus. However, many functions are not elementary. For
example, the function given in Problem 7.15 is not elementary. To complicate matters,
many elementary functions do not have elementary antiderivatives. In fact, some rather
innocent looking elementary functions do not have elementary antiderivatives. The func-
tion from part (d) of Problem 7.28 is such an example. Here are a few more elementary
functions that do not have elementary antiderivatives:

•
p
1� x4

• 1
ln(x)

• sin(x2) and cos(x2)

• sin(x)
x

• ex

x

• ee
x

Determining which elementary functions have elementary antiderivatives is not an easy
task. The upshot is that utilizing the the Fundamental Theorem of Calculus to compute
an integral may be di�cult for seemingly innocent looking functions.

Problem 7.40. Using Problem 7.39 and your knowledge of antiderivatives from first
semester calculus, compute the integrals in parts (a) and (b) of Problem 7.28.

Problem 7.41. According to WolframAlpha,
Z 1

0

1p
x
dx = 2.

Explain why the techniques of this chapter cannot be used to verify this. How one might
go about computing this integral? What definitions are needed?
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