Chapter 7

Differentiation

It's time for derivatives!
Definition 7.1. Let $f: A \rightarrow \mathbb{R}$ be a function and let $a \in A$ such that f is defined on some open interval I containing a (i.e., $a \in I \subseteq A$). The derivative of f at a is defined via

$$
f^{\prime}(a):=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided this limit exists. If $f^{\prime}(a)$ exists, then we say that f is differentiable at a. More generally, we say that f is differentiable on $B \subseteq A$ if f is differentiable at every point in B. As a special case, f is said to be differentiable if it is differentiable at every point in its domain. If f does indeed have a derivative at some points in its domain, then the derivative of f is the function denoted by f^{\prime}, such that for each number x at which f is differentiable, $f^{\prime}(x)$ is the derivative of f at x. We may also write

$$
\frac{d}{d x}[f(x)]:=f^{\prime}(x) .
$$

The lefthand side of the equation above is typically read as, "the derivative of f with respect to x." The notation $f^{\prime}(x)$ is commonly referred to as "Newton's notation" for the derivative while $\frac{d}{d x}[f(x)]$ is often referred to as "Liebniz's notation".

Note that the definition of derivative automatically excludes the kind of behavior we saw with continuous functions, where a function defined only at a single point was continuous.

Problem 7.2. Find the derivative of $f(x)=x^{2}-x+1$ at $a=2$.
Problem 7.3. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ via $f(x)=c$ for some constant $c \in \mathbb{R}$. Prove that f is differentiable on \mathbb{R} and $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$.

Problem 7.4. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ via $f(x)=m x+b$ for some constants $m, b \in \mathbb{R}$. Prove that f is differentiable and $f^{\prime}(x)=m$ for all $x \in \mathbb{R}$.

Problem 7.5. Find and prove a formula for the derivative of $f(x)=a x^{2}+b x+c$ for any $a, b, c \in \mathbb{R}$.

Problem 7.6. Explain why any function defined only on \mathbb{Z} cannot have a derivative.
Problem 7.7. If f is differentiable at x and $c \in \mathbb{R}$, prove that the function $c f$ also has a derivative at x and $(c f)^{\prime}(x)=c f^{\prime}(x)$.

Problem 7.8. If f and g are differentiable at x, show that the function $f+g$ also has a derivative at x and $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$.
The next problem tells us that differentiability implies continuity.
Problem 7.9. Prove that if f has a derivative at $x=a$, then f is also continuous at $x=a$.
The converse of the previous theorem is not true. That is, continuity does not imply differentiability.

Problem 7.10. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ via $f(x)=|x|$.
(a) Prove that f is continuous at every point in its domain.
(b) Prove that f is differentiable everywhere except at $x=0$.

Problem 7.11. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ via

$$
f(x)= \begin{cases}x, & \text { if } x \in \mathbb{Q} \\ 0, & \text { otherwise }\end{cases}
$$

Show that f is continuous at $x=0$, but not differentiable at $x=0$.
The next problem states the well-known Product and Quotient Rules for Derivatives. You will need to use Problem 7.9 in their proofs.

Problem 7.12. Suppose f and g are differentiable at x. Prove each of the following:
(a) (Product Rule) The function $f g$ is differentiable at x. Moreover, its derivative function is given by

$$
(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

(b) (Quotient Rule) The function f / g is differentiable at x provided $g(x) \neq 0$. Moreover, its derivative function is given by

$$
\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

The next problem is sure to make your head hurt.
Problem 7.13. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ via

$$
g(x)= \begin{cases}0, & \text { if } x \in \mathbb{Q} \\ 1, & \text { otherwise }\end{cases}
$$

Now, define $f: \mathbb{R} \rightarrow \mathbb{R}$ via $f(x)=x^{2} g(x)$. Determine where f is differentiable.

The next result tells us that if a differentiable function attains a maximum value at some point in an open interval contained in the domain of the function, then the derivative is zero at that point. In a calculus class, we would say that differentiable functions attain local maximums at critical numbers.

Problem 7.14. Let $f: A \rightarrow \mathbb{R}$ be a function such that $[a, b] \subseteq A, f^{\prime}(c)$ exists for some $c \in(a, b)$, and $f(c) \geq f(x)$ for all $x \in(a, b)$. Prove that $f^{\prime}(c)=0$.

Problem 7.15. Let $f: A \rightarrow \mathbb{R}$ be a function such that $f^{\prime}(c)=0$ for some $c \in A$. Does this imply that there exists an open interval $(a, b) \subseteq A$ containing c such that either $f(x) \geq f(c)$ or $f(x) \leq f(c)$ for all $x \in(a, b)$? If so, prove it. Otherwise, provide a counterexample.

The next problem asks you to prove a result called Rolle's Theorem.
Problem 7.16 (Rolle's Theorem). Let $f: A \rightarrow \mathbb{R}$ be a function such that $[a, b] \subseteq A$. If f is continuous on $[a, b]$, differentiable on (a, b), and $f(a)=f(b)$, then prove that there exists a point $c \in(a, b)$ such that $f^{\prime}(c)=0 .{ }^{1}$

We can use Rolle's Theorem to prove the next result, which is the well-known Mean Value Theorem.

Problem 7.17 (Mean Value Theorem). Let $f: A \rightarrow \mathbb{R}$ be a function such that $[a, b] \subseteq A$. If f is continuous on $[a, b]$ and differentiable on (a, b), then prove that there exists a point $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .^{2}
$$

Problem 7.18. Let $f: A \rightarrow \mathbb{R}$ be a function such that $[a, b] \subseteq A$. If f is continuous on $[a, b]$ and differentiable on (a, b) such that $f^{\prime}(x)=0$ for all $x \in(a, b)$, then prove that f is constant over $[a, b]$. 3

Problem 7.19. Let $f: A \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$ such that $[a, b] \subseteq A$. Prove that if f and g are continuous on $[a, b]$ and $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in(a, b)$, then there exists $C \in \mathbb{R}$ such that $f(x)=g(x)+C$ for all $x \in[a, b]$.

Problem 7.20. Is the converse of the previous problem true? If so, prove it. Otherwise, provide a counterexample.

[^0]
[^0]: ${ }^{1}$ Hint: First, apply the Extreme Value Theorem to f and $-f$ to conclude that f attains both a maximum and minimum on $[a, b]$. If both the maximum and minimum are attained at the end points of $[a, b]$, then the maximum and minimum are the same and thus the function is constant. What does Problem 7.3 tell us in this case? But what if f is not constant over $[a, b]$? Try using Problem 7.14.
 ${ }^{2}$ Hint: Cleverly define the function $g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)$. Is g continuous on [a,b]? Is g differentiable on (a, b) ? Can we apply Rolle's Theorem to g using the interval $[a, b]$? What can you conclude? Magic!
 ${ }^{3}$ Hint: Try applying the Mean Value Theorem to $[a, t]$ for every $t \in(a, b]$.

