
Chapter 6

Limits

We are now prepared to dig into limits, which you are likely familiar with from calculus.
However, chances are that you were never introduced to the formal definition.

Definition 6.1. Let f : A! R be a function, where A ✓ R. The limit of f as x approaches
a is L if the following two conditions hold:

1. The point a is an accumulation point of A, and

2. For every ✏ > 0 there exists a � > 0 such that if x 2 A and 0 < |x � a| < �, then
|f (x)�L| < ✏.

Notationally, we write this as
lim
x!a

f (x) = L.

It turns out that limits are unique if they exist. You may assume this going forward.

Problem 6.2. Why do we require 0 < |x � a| in Definition 6.1?

Problem 6.3. Why do you think we require a to be an accumulation point of the domain
of f ? What happens if a 2 A but a is not an accumulation point of A (such points are
called isolated points of A)?

Example 6.4. It should come as no surprise to you that limx!5(3x + 2) = 17. Let’s prove
this using Definition 6.1. First, notice that the default domain of f (x) = 3x + 2 is the set
of real numbers. So, any x-value we choose will be in the domain of the function. Now,
let ✏ > 0. Choose � = ✏/3. You’ll see in a moment why this is a good choice for �. Suppose
x 2 R such that 0 < |x � 5| < �. We see that

|(3x +2)� 17| = |3x � 15| = 3 · |x � 5| < 3 · � = 3 · ✏/3 = ✏.

This proves the desired result.

Example 6.5. Let’s try something a little more di�cult. Let’s prove that limx!3 x2 = 9. As
in the previous example, the default domain of our function is the set of real numbers.
Our goal is to prove that for all ✏ > 0, there exists � > 0 such that if x 2 R such that
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0 < |x�3| < �, then |x2 �9| < ✏. Let ✏ > 0. We need to figure out what � needs to be. Notice
that

|x2 � 9| = |x +3| · |x � 3|.
The quantity |x � 3| is something we can control with �, but the quantity |x + 3| seems to
be problematic.

To get a handle on what’s going on, let’s temporarily assume that � = 1 and suppose that
0 < |x � 3| < 1. This means that x is within 1 unit of 3. In other words, 2 < x < 4. But this
implies that 5 < x + 3 < 7, which in turn implies that |x + 3| is bounded above by 7. That
is, |x + 3| < 7 when 0 < |x � 3| < 1. It’s easy to see that we still have |x + 3| < 7 even if we
choose � smaller than 1. That is, we have |x + 3| < 7 when 0 < |x � 3| < �  1. Putting this
altogether, if we suppose that 0 < |x � 3| < �  1, then we can conclude that

|x2 � 9| = |x +3| · |x � 3| < 7 · |x � 3|.

This work informs our choice of �, but remember our scratch work above hinged on
knowing that �  1. If ✏/7  1, we should choose � = ✏/7. However, if ✏/7 > 1, the
easiest thing to do is to just let � = 1. Let’s button it all up.

Let ✏ > 0. Choose � =min{1,✏/7} and suppose 0 < |x � 3| < �. We see that

|x2 � 9| = |x +3| · |x � 3| < 7 · |x � 3| < 7 · �  ✏

since

7 · � =

8>><>>:
7, if ✏ > 7
7 · ✏/7, if ✏  7.

Therefore, limx!3 x2 = 9, as expected.

Problem 6.6. Prove that lim
x!1

(17x � 42) = �25 using Definition 6.1.

Problem 6.7. Prove that lim
x!2

x3 = 8 using Definition 6.1.

Problem 6.8. Define f : R! R via

f (x) =

8>><>>:
x, if x , 0
17, if x = 0.

Using Definition 6.1, prove that limx!0 f (x) = 0.

Problem 6.9. Define f : R! R via

f (x) =

8>><>>:
1, if x  0
�1, if x > 0.

Using Definition 6.1, prove that lim
x!0

f (x) does not exist.
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Problem 6.10. Define f : R! R via

f (x) =

8>><>>:
1, if x 2Q
0, otherwise.

Using Definition 6.1, prove that lim
x!a

f (x) does not exist for all a 2 R.

Problem 6.11. Let f : A! R be a function. Prove that if lim
x!a

f (x) exists, then the limit is
unique.

The ✏ � � approach to a function f being continuous at x = a (see Problem 5.5) looks
awfully similar to the definition of the limit of f as x approaches a. Let’s explore this a
bit.

Problem 6.12. Explain the similarities and di↵erences between the definitions of con-
tinuity at x = a versus the limit as x approaches a. State a theorem about continuity
involving limits. You will have to make a special statement about isolated points of the
domain.

Perhaps not surprisingly, there is a nice connection between limits and sequences.

Problem 6.13. Let f : A! R be a function and let a be an accumulation point of A. Then
limx!a f (x) exists if and only if for every sequence (xn) in A \ {a} converging to a, the
sequence (f (xn)) converges, in which case, limx!a f (x) equals the limit of the sequence
(f (xn)). This is often written as

lim
x!a

f (x) = lim
n!1

f (xn).

In order for limits to be a useful tool, we need to prove a few important facts.

Problem 6.14 (Limit Laws). Let f : A! R and g : B! R be functions. Prove each of the
following using Definition 6.1.

(a) If c 2 R, then lim
x!a

c = c.

(b) If lim
x!a

f (x) and lim
x!a

g(x) both exist, then

lim
x!a

(f (x)± g(x)) = lim
x!a

f (x)± lim
x!a

g(x).

(c) If lim
x!a

f (x) and lim
x!a

g(x) both exist, then

lim
x!a

(f (x) · g(x)) = lim
x!a

f (x) · lim
x!a

g(x).

(d) If c 2 R and lim
x!a

f (x) exists, then

lim
x!a

(c · f (x)) = c · lim
x!a

f (x).
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(e) If lim
x!a

f (x) and lim
x!a

g(x) both exist and lim
x!a

g(x) , 0, then

lim
x!a

f (x)
g(x)

=
limx!a f (x)
limx!a g(x)

.

(f) If f is continuous at b and lim
x!a

g(x) = b, then

lim
x!a

f (g(x)) = f (lim
x!a

g(x)) = f (b).

The next problem is extremely useful. It allows us to simplify our calculations when
computing limits.

Problem 6.15. Let f : A ! R and g : A ! R be functions and let a be an accumulation
point of A. If there exists an open interval S such that f (x) = g(x) for all x 2 (S \A) \ {a},
then

lim
x!a

f (x) = lim
x!a

g(x)

provided one of the limits exists.
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