
Chapter 2

Preliminaries

In this chapter, we summarize some background material we need to be familiar with.
Sections 2.1 and 2.2 should mostly be review.

2.1 Sets

A set is a collection of objects called elements. If A is a set and x is an element of A, we
write x 2 A . Otherwise, we write x < A . The set containing no elements is called the
empty set, and is denoted by the symbol ; . Any set that contains at least one element is
referred to as a nonempty set.

If we think of a set as a box potentially containing some stu↵, then the empty set is a box
with nothing in it. One assumptionwewill make is that for any setA,A < A. The language
associated to sets is specific. We will often define sets using the following notation, called
set-builder notation:

S = {x 2 A | x satisfies some condition}

The first part “x 2 A” denotes what type of x is being considered. The statements to the
right of the vertical bar (not to be confused with “divides”) are the conditions that x must
satisfy in order to be members of the set. This notation is read as “The set of all x in A
such that x satisfies some condition,” where “some condition” is something specific about
the restrictions on x relative to A.

There are a few sets that are commonly discussed in mathematics and have predefined
symbols to denote them. We’ve already encountered the integers, natural numbers, and
real numbers. Notice that our definition of the rational numbers uses set-builder nota-
tion.

• Natural numbers: N := {1,2,3, . . .} . Some books will include zero in the set of nat-
ural numbers, but we do not.

• Integers: Z := {0,±1,±2,±3, . . .} .

• Rational Numbers: Q := {a/b | a,b 2 Z and b , 0} .
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• Real Numbers: R denotes the set of real numbers.

Since the set of natural numbers consists of the positive integers, the natural numbers are
sometimes denoted by Z+.

If A and B are sets, then we say that A is a subset of B, written A ✓ B , provided that
every element of A is an element of B. Observe that A ✓ B is equivalent to “For all x in
the universe of discourse, if x 2 A, then x 2 B.”
Every nonempty set always has two rather boring subsets.

Problem 2.1. Let A be a set. Write a short proof for each of the following.

(a) A ✓ A (b) ; ✓ A

The next problem shows that “✓” is a transitive relation.

Problem 2.2 (Transitivity of subsets). Prove that if A, B, and C are sets such that A ✓ B
and B ✓ C, then A ✓ C.

Let A and B be sets in some universe of discourse U . We define the following.

• The sets A and B are equal, denoted A = B , if and only if A ✓ B and B ✓ A. Note
that if we want to prove A = B, then we have to do two separate mini-proofs: one
for A ✓ B and one for B ✓ A. It is common to label each mini-proof with “(✓)” and
“(◆)”, respectively.

• If A ✓ B, then A is called a proper subset provided that A , B. In this case, we may
write A ⇢ B or A( B . Warning: Some books use ⇢ to mean ✓.

• The union of the sets A and B is A[B := {x 2U | x 2 A or x 2 B} .

• The intersection of the sets A and B is A\B := {x 2U | x 2 A and x 2 B} .

• The set di↵erence of the sets A and B is A \B := {x 2U | x 2 A and x < B} .

• The complement of A (relative to U ) is the set Ac :=U \A = {x 2U | x < A} .

• If A\B = ;, then we say that A and B are disjoint sets.

Example 2.3. The set R \Q is called the set of irrational numbers.

Problem 2.4. Prove that if A and B are sets such that A ✓ B, then Bc ✓ Ac.

Problem 2.5. Prove that if A and B are sets, then A \B = A\Bc.

Problem 2.6. Give an example where A , B but A \B = ;.
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Consider the following collection of sets:

{a}, {a,b}, {a,b,c}, . . . , {a,b,c, . . . , z}

This collection has a natural way for us to “index” the sets:

A1 = {a},A2 = {a,b},A3 = {a,b,c}, . . . ,A26 = {a,b,c, . . . , z}

In this case the sets are indexed by the set {1,2, . . . ,26}, where the subscripts are taken
from the index set. If we wanted to talk about an arbitrary set from this indexed collec-
tion, we could use the notation An.

Using indexing sets in mathematics is an extremely useful notational tool, but it is impor-
tant to keep straight the di↵erence between the sets that are being indexed, the elements
in each set being indexed, the indexing set, and the elements of the indexing set.

Any set (finite or infinite) can be used as an indexing set. Often capital Greek letters are
used to denote arbitrary indexing sets and small Greek letters to represent elements of
these sets. If the indexing set is a subset of R, then it is common to use Roman letters as
individual indices. Of course, these are merely conventions, not rules.

• If � is a set and we have a collection of sets indexed by �, then we may write {S↵}↵2�
to refer to this collection. We read this as “the set of S-alphas over alpha in Delta.”

• If a collection of sets is indexed by N, then we may write {Un}n2N or {Un}1n=1.

• Borrowing from this idea, a collection {A1, . . . ,A26}may be written as {An}26n=1.

Suppose we have a collection {A↵}↵2�.

• The union of the entire collection is defined via
[

↵2�
A↵ = {x | x 2 A↵ for some ↵ 2 �}.

• The intersection of the entire collection is defined via
\

↵2�
A↵ = {x | x 2 A↵ for all ↵ 2 �}.

In the special case that � = N, we write

1[

n=1

An = {x | x 2 An for some n 2 N} = A1 [A2 [A3 [ · · ·

and 1\

n=1

An = {x | x 2 An for all n 2 N} = A1 \A2 \A3 \ · · ·
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Similarly, if � = {1,2,3,4}, then
4[

n=1

An = A1 [A2 [A3 [A4 and
4\

n=1

An = A1 \A2 \A3 \A4.

Notice the di↵erence between “
S
” and “[” (respectively, “T” and “\”).

Problem 2.7. Let {An}26n=1 be the collection from the discussion below Problem 2.6. Find
each of the following.

(a)
26[

n=1

An (b)
26\

n=1

An

Problem 2.8. For each r 2 Q (the rational numbers), let Nr be the set containing all real
numbers except r. Find each of the following.

(a)
[

r2Q
Nr (b)

\

r2Q
Nr

A collection of sets {A↵}↵2� is pairwise disjoint if A↵ \A� = ; for ↵ , �.
Problem 2.9. Draw a Venn diagram of a collection of three sets that are pairwise disjoint.

Problem 2.10. Provide an example of a collection of three sets, say {A1,A2,A3}, such that
the collection is not pairwise disjoint, but

T3
n=1An = ;.

Problem 2.11. Find a collection of nonempty sets Si ✓ N indexed by i 2 N such that
Si+1 ( Si and

T1
i=1Si = ;.

Problem 2.12. Find a collection of nonempty sets Si ✓ N indexed by i 2 N such that
Si ( Si+1 but

S1
i=1Si , N.

Problem 2.13 (DeMorgan’s Law). Let {A↵}↵2� be a collection of sets. Prove one of the
following.

(a)

0
BBBBB@
[

↵2�
A↵

1
CCCCCA

C

=
\

↵2�
AC
↵ (b)

0
BBBBB@
\

↵2�
A↵

1
CCCCCA

C

=
[

↵2�
AC
↵

Problem 2.14 (Distribution of Union and Intersection). Let {A↵}↵2� be a collection of sets
and let B be any set. Prove one of the following.

(a) B[
0
BBBBB@
\

↵2�
A↵

1
CCCCCA =

\

↵2�
(B[A↵) (b) B\

0
BBBBB@
[

↵2�
A↵

1
CCCCCA =

[

↵2�
(B\A↵)

For each n 2 N, we define an n-tuple to be an ordered list of n elements of the form
(a1, a2, . . . , an). We refer to ai as the ith component (or coordinate) of (a1, a2, . . . , an). Two
n-tuples (a1, a2, . . . , an) and (b1, b2, . . . , bn) are equal if and only if ai = bi for all 1  i  n. A
2-tuple (a,b) is more commonly referred to as an ordered pair while a 3-tuple (a,b,c) is
often called an ordered triple.
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We can use the notion of n-tuples to construct new sets from existing sets. If A and B
are sets, the Cartesian product (or direct product) of A and B, denoted A⇥B (read as “A
times B” or “A cross B”), is the set of all ordered pairs where the first component is from
A and the second component is from B. In set-builder notation, we have

A⇥B := {(a,b) | a 2 A,b 2 B} .
We similarly define the Cartesian product of n sets, say A1, . . . ,An, by

nY

i=1

Ai := A1 ⇥ · · ·⇥An := {(a1, . . . , an) | aj 2 Aj for all 1  j  n} ,

where Ai is referred to as the ith factor of the Cartesian product. As a special case, the
set

A⇥ · · ·⇥A|      {z      }
n factors

is often abbreviated as An.

Example 2.15. The standard two-dimensional plane R2 and standard three space R3 are
familiar examples of Cartesian products. In particular, we have

R2 = R⇥R = {(x,y) | x,y 2 R}
and

R3 = R⇥R⇥R = {(x,y,z) | x,y,z 2 R}.
Problem 2.16. If A is a set, then what is A⇥; equal to?
Problem 2.17. Given sets A and B, when will A⇥B be equal to B⇥A?
We now turn our attention to subsets of Cartesian products.

Problem 2.18. Prove that if A, B, C, and D are sets such that A ✓ C and B ✓ D, then
A⇥B ✓ C ⇥D.

Problem 2.19. Is it true that if A⇥B ✓ C ⇥D, then A ✓ C and B ✓D? Don’t forget to think
about cases involving the empty set.

Problem 2.20. Is every subset of C ⇥D of the form A ⇥B, where A ✓ C and B ✓ D? If so,
prove it. If not, find a counterexample.

Problem 2.21. If A, B, and C are nonempty sets, is A⇥B a subset of A⇥B⇥C?
Problem 2.22. Let A, B, C, and D be sets. Determine whether each of the following
statements is true or false. If a statement is true, prove it. Otherwise, provide a coun-
terexample.

(a) (A\B)⇥ (C \D) = (A⇥C)\ (B⇥D)

(b) (A[B)⇥ (C [D) = (A⇥C)[ (B⇥D)

(c) A⇥ (B\C) = (A⇥B)\ (A⇥C)
(d) A⇥ (B[C) = (A⇥B)[ (A⇥C)
(e) A⇥ (B \C) = (A⇥B) \ (A⇥C)
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2.2 Functions

Let A and B be sets. A relation R from A to B is a subset of A ⇥B. If R is a relation from
A to B and (a,b) 2 R, then we say that a is related to b and we may write aRb in place of
(a,b) 2 R.
A function is a special type of relation, where the basic building blocks are a first set and a
second set, say X and Y , and a “correspondence” that assigns every element of X to exactly
one element of Y . More formally, if X and Y are nonempty sets, a function f from X to

Y is a relation from X to Y such that for every x 2 X, there exists a unique y 2 Y such that
(x,y) 2 f . The set X is called the domain of f and is denoted by Dom(f ) . The set Y is

called the codomain of f and is denoted by Codom(f ) while the subset of the codomain
defined via

Rng(f ) := {y 2 Y | there exists x such that (x,y) 2 f }
is called the range of f or the image of X under f .

There is a variety of notation and terminology associated to functions. We will write
f : X! Y to indicate that f is a function from X to Y . We will make use of statements
such as “Let f : X! Y be the function defined via. . . ” or “Define f : X! Y via. . . ”, where
f is understood to be a function in the second statement. Sometimes the word mapping

(ormap) is used in place of the word function. If (a,b) 2 f for a function f , we often write
f (a) = b and say that “f maps a to b” or “f of a equals b”. In this case, a may be called
an input of f and is the preimage of b under f while b is called an output of f and is
the image of a under f . Note that the domain of a function is the set of inputs while the
range is the set of outputs for the function.

Notice that we can interpret our definition of function in terms of existence and unique-
ness. That is, f : X! Y is a function provided:

1. (Existence) For each x 2 X, there exists y 2 Y such that y = f (x), and

2. (Uniqueness) If f (x) = y1 and f (x) = y2, then y1 = y2.

In other words, every element of the domain is utilized and is utilized exactly once. How-
ever, there are no restrictions on whether an element of the codomain ever appears in the
second coordinate of an ordered pair in the relation. Yet if an element of Y is in the range
of f , it may appear in more than one ordered pair in the relation.

It follows immediately from the definition of function that two functions are equal if and
only if they have the same domain, same codomain, and the same set of ordered pairs
in the relation. That is, functions f and g are equal if and only if Dom(f ) = Dom(g),
Codom(f ) = Codom(g), and f (x) = g(x) for all x 2 X.

Since functions are special types of relations, we can represent them using digraphs and
graphs when practical. Digraphs for functions are often called function (or mapping)
diagrams. When drawing function diagrams, it is standard practice to put the vertices
for the domain on the left and the vertices for the codomain on the right, so that all

15



CHAPTER 2. PRELIMINARIES

directed edges point from left to right. We may also draw an additional arrow labeled by
the name of the function from the domain to the codomain.

Example 2.23. Let X = {a,b,c,d} to Y = {1,2,3,4} and define the relation f from X to Y
via

f = {(a,2), (b,4), (c,4), (d,1)}.
Since each element X appears exactly once as a first coordinate, f is a function with
domain X and codomain Y (i.e., f : X ! Y ). In this case, we see that Rng(f ) = {1,2,4}.
Moreover, we can write things like f (a) = 2 and c 7! 4, and say things like “f maps b to
4” and “the image of d is 1.” The function diagram for f is depicted in Figure 2.1.

a

b

c

d

1

2

3

4

X Y

f

Figure 2.1: Function diagram for a function from X = {a,b,c,d, } to Y = {1,2,3,4}.

Problem 2.24. What properties does the digraph for a relation from X to Y need to have
in order for it to represent a function?

Problem 2.25. In high school I am sure that you were told that a graph represents a
function if it passes the vertical line test. Carefully state what the vertical line test says
and then explain why it works.

Sometimes we can define a function using a formula. For example, we can write f (x) =
x2 � 1 to mean that each x in the domain of f maps to x2 � 1 in the codomain. How-
ever, notice that providing only a formula is ambiguous! A function is determined by
its domain, codomain, and the correspondence between these two sets. If we only pro-
vide a description for the correspondence, it is not clear what the domain and codomain
are. Two functions that are defined by the same formula, but have di↵erent domains or
codomains are not equal.

Example 2.26. The function f : R! R defined via f (x) = x2�1 is not equal to the function
g : N! R defined by g(x) = x2 � 1 since the two functions do not have the same domain.
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Sometimes we rely on context to interpret the domain and codomain. For example, in
a calculus class, when we describe a function in terms of a formula, we are implicitly
assuming that the domain is the largest allowable subset of R—sometimes called the
default domain—that makes sense for the given formula while the codomain is R.

Example 2.27. If we write f (x) = x2 � 1, g(x) = px, and h(x) = 1
x without mentioning the

domains, we would typically interpret these as the functions f : R! R, g : [0,1)! R,
and h : R \ {0}! R that are determined by their respective formulas.

Problem 2.28. Provide an example of each of the following. You may draw a function
diagram, write down a list of ordered pairs, or a write a formula as long as the domain
and codomain are clear.

(a) A function f from a set with 4 elements to a set with 3 elements such that Rng(f ) =
Codom(f ).

(b) A function g from a set with 4 elements to a set with 3 elements such that Rng(g) is
strictly smaller than Codom(g).

There are a few special functions that we should know the names of. Let X and Y be
nonempty sets.

• If X ✓ Y , then the function ◆ : X! Y defined via ◆(x) = x is called the inclusion map

from X into Y . Note that “◆” is the Greek letter “iota”.

• If the domain and codomain are equal, the inclusion map has a special name. If X
is a nonempty set, then the function iX : X ! X defined via iX(x) = x is called the
identity map (or identity function) on X.

• Any function f : X ! Y defined via f (x) = c for a fixed c 2 Y is called a constant

function.

• A piecewise-defined function (or piecewise function) is a function defined by
specifying its output on a partition of the domain. Note that “piecewise” is a way of
expressing the function, rather than a property of the function itself.

Example 2.29. The function f : R! R defined via

f (x) =

8>>>><>>>>:

x2 � 1, if x is negative,
17, if x = 0,
�x, if x is positive

is an example of a piecewise-defined function.

It is important to point out that not every function can be described using a formula! De-
spite your prior experience, functions that can be represented succinctly using a formula
are rare.
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The next problem illustrates that some care must be taken when attempting to define a
function.

Problem 2.30. For each of the following, explain why the given description does not
define a function.

(a) Define f : {1,2,3}! {1,2,3} via f (a) = a� 1.
(b) Define g : N!Q via g(n) = n

n�1.

(c) Let A1 = {1,2,3} and A2 = {3,4,5}. Define h : A1 [A2! {1,2} via

h(x) =

8>><>>:
1, if x 2 A1

2, if x 2 A2.

(d) Define s :Q! Z via s(a/b) = a+ b.

In mathematics, we say that an expression is well defined (or unambiguous) if its defi-
nition yields a unique interpretation. Otherwise, we say that the expression is not well
defined (or is ambiguous). For example, if a,b,c 2 R, then the expression abc is well de-
fined since it does not matter if we interpret this as (ab)c or a(bc) since the real numbers
are associative under multiplication.

When we attempt to define a function, it may not be clear without doing some work that
our definition really does yield a function. If there is some potential ambiguity in the def-
inition of a function that ends up not causing any issues, we say that the function is well
defined. However, this phrase is a bit of misnomer since all functions are well defined.
The issue of whether a description for a proposed function is well defined often arises
when defining things in terms of representatives of equivalence classes, or more gener-
ally in terms of how an element of the domain is written. For example, the descriptions
given in parts (c) and (d) of Problem 2.30 are not well defined. To show that a potentially
ambiguous description for a function f : X ! Y is well defined prove that if a and b are
two representations for the same element in X, then f (a) = f (b).

Let f : X! Y be a function.

• The function f is said to be injective (or one-to-one) if for all y 2 Rng(f ), there is a
unique x 2 X such that y = f (x).

• The function f is said to be surjective (or onto) if for all y 2 Y , there exists x 2 X
such that y = f (x).

• If f is both injective and surjective, we say that f is bijective.

An injective function is also called an injection, a surjective function is called a surjec-

tion, and a bijective function is called a bijection (or a one-to-one correspondence). A
one-to-one correspondence should not be confused with a one-to-one function whichmay
not be surjective. To prove that a function f : X! Y is an injection, we must prove that if
f (x1) = f (x2), then x1 = x2. To show that f is surjective, you should start with an arbitrary
y 2 Y and then work to show that there exists x 2 X such that y = f (x).
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Problem 2.31. Assume that X and Y are finite sets. Provide an example of each of the
following. You may draw a function diagram, write down a list of ordered pairs, or a
write a formula as long as the domain and codomain are clear.

(a) A function f : X! Y that is injective but not surjective.

(b) A function f : X! Y that is surjective but not injective.

(c) A function f : X! Y that is a bijection.

(d) A function f : X! Y that is neither injective nor surjective.

Problem 2.32. Provide an example of each of the following. You may either draw a graph
or write down a formula. Make sure you have the correct domain.

(a) A function f : R! R that is injective but not surjective.

(b) A function f : R! R that is surjective but not injective.

(c) A function f : R! R that is a bijection.

(d) A function f : R! R that is neither injective nor surjective.

(e) A function f : N⇥N! N that is injective.

Problem 2.33. Suppose X ✓ R and f : X ! R is a function. Fill in the blank with the
appropriate word.

The function f : X ! R is if and only if every horizontal line hits
the graph of f at most once.

This statement is often called the horizontal line test. Explain why the horizontal line
test is true.

Problem 2.34. Suppose X ✓ R and f : X ! R is a function. Fill in the blank with the
appropriate word.

The function f : X ! R is if and only if every horizontal line hits
the graph of f at least once.

Explain why this statement is true.

Problem 2.35. Suppose X ✓ R and f : X ! R is a function. Fill in the blank with the
appropriate word.

The function f : X ! R is if and only if every horizontal line hits
the graph of f exactly once.

Explain why this statement is true.

Problem 2.36. Determine whether each of the following functions is injective, surjec-
tive, both, or neither. In each case, you should provide a proof or a counterexample as
appropriate.
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(a) Define f : R! R via f (x) = x2

(b) Define g : R! [0,1) via g(x) = x2

(c) Define h : R! R via h(x) = x3

(d) Define k : R! R via k(x) = x3 � x

(e) Define c : R⇥R! R via c(x,y) = x2 + y2

(f) Define f : N! N⇥N via f (n) = (n,n)

(g) Define g : Z! Z via

g(n) =

8>><>>:

n
2 , if n is even
n+1
2 , if n is odd

(h) Define ` : Z! N via

`(n) =

8>><>>:
2n+1, if n � 0
�2n, if n < 0

The next two results should not come as as surprise.

Problem 2.37. Prove that the inclusion map ◆ : X! Y for X ✓ Y is an injection.

Problem 2.38. Prove that the identity function iX : X! X is a bijection.

If f : X! Y and g : Y ! Z are functions, we define g � f : X! Z via (g � f )(x) = g(f (x)) .
The function g � f is called the composition of f and g . It is important to notice that the
function on the right is the one that “goes first.” Moreover, we cannot compose any two
random functions since the codomain of the first function must agree with the domain of
the second function. In particular, f � g may not be a sensible function even when g � f
exists. Figure 2.2 provides a visual representation of function composition in terms of
function diagrams.

Example 2.39. Consider the inclusion map ◆ : X ! Y such that X is a proper subset of Y
and suppose f : Y ! Z is a function. Then the composite function f � ◆ : X ! Z is given
by

f � ◆(x) = f (◆(x)) = f (x)

for all x 2 X. Notice that f � ◆ is simply the function f but with a smaller domain. In this
case, we say that f � ◆ is the restriction of f to X, which is often denoted by f |X .

The next problem illustrates that f � g and g � f need not be equal even when both com-
posite functions exist.

Problem 2.40. Define f : R! R and g : R! R via f (x) = x2 and g(x) = 3x�5, respectively.
Determine formulas for the composite functions f � g and g � f .

The next problem tells us that function composition is associative.
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x f (x) g(f (x))

X Y Z

f g

g � f

Figure 2.2: Visual representation of function composition.

Problem 2.41. Prove that if f : X ! Y , g : Y ! Z , and h : Z ! W are functions, then
(h � g) � f = h � (g � f ).

Problem 2.42. In each case, give examples of finite sets X, Y , and Z , and functions f :
X ! Y and g : Y ! Z that satisfy the given conditions. Drawing a function diagram is
su�cient.

(a) f is surjective, but g � f is not surjective.

(b) g is surjective, but g � f is not surjective.

(c) f is injective, but g � f is not injective.

(d) g is injective, but g � f is not injective.

Problem 2.43. Prove that if f : X ! Y and g : Y ! Z are both surjective functions, then
g � f is also surjective.

Problem 2.44. Prove that if f : X ! Y and g : Y ! Z are both injective functions, then
g � f is also injective.

Problem 2.45. Prove that if f : X! Y and g : Y ! Z are both bijections, then g � f is also
a bijection.

Problem 2.46. Assume that f : X ! Y and g : Y ! Z are both functions. Determine
whether each of the following statements is true or false. If a statement is true, prove it.
Otherwise, provide a counterexample.

(a) If g � f is injective, then f is injective.

(b) If g � f is injective, then g is injective.

(c) If g � f is surjective, then f is surjective.
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(d) If g � f is surjective, then g is surjective.

There are two important types of sets related to functions. Let f : X! Y be a function.

• If S ✓ X, the image of S under f is defined via

f (S) := {f (x) | x 2 S} .

• If T ✓ Y , the preimage (or inverse image) of T under f is defined via

f �1(T ) := {x 2 X | f (x) 2 T } .

The image of a subset S of the domain is simply the subset of the codomain we obtain
by mapping the elements of S . It is important to emphasize that the function f maps
elements of X to elements of Y , but we can apply f to a subset of X to yield a subset of Y .
That is, if S ✓ X, then f (S) ✓ Y . Note that the image of the domain is the same as the
range of the function. That is, f (X) = Rng(f ).

When it comes to preimages, the notation f �1(T ) should not be confused with an inverse
function (which may or may not exist for an arbitrary function f ). For T ✓ Y , f �1(T ) is
the set of elements in the domain that map to elements in T . As a special case, f �1({y})
is the set of elements in the domain that map to y 2 Y . If y < Rng(f ), then f �1({y}) = ;.
Notice that if y 2 Y , f �1({y}) is always a sensible thing to write while f �1(y) only makes
sense if f �1 is a function. Also, note that the preimage of the codomain is the domain.
That is, f �1(Y ) = X.

Problem 2.47. Define f : Z! Z via f (x) = x2. List elements in each of the following sets.

(a) f ({0,1,2})

(b) f �1({0,1,4})

Problem 2.48. Find functions f and g and sets S and T such that f (f �1(T )) , T and
g�1(g(S)) , S .

Problem 2.49. Suppose f : X ! Y is an injection and A and B are disjoint subsets of X.
Are f (A) and f (B) necessarily disjoint subsets of Y ? If so, prove it. Otherwise, provide a
counterexample.

Problem 2.50. Let f : X! Y be a function and supposeA,B ✓ X and C,D ✓ Y . Determine
whether each of the following statements is true or false. If a statement is true, prove it.
Otherwise, provide a counterexample.

(a) If A ✓ B, then f (A) ✓ f (B).

(b) If C ✓D, then f �1(C) ✓ f �1(D).

(c) f (A[B) ✓ f (A)[ f (B).
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(d) f (A[B) ◆ f (A)[ f (B).

(e) f (A\B) ✓ f (A)\ f (B).

(f) f (A\B) ◆ f (A)\ f (B).

(g) f �1(C [D) ✓ f �1(C)[ f �1(D).

(h) f �1(C [D) ◆ f �1(C)[ f �1(D).

(i) f �1(C \D) ✓ f �1(C)\ f �1(D).

(j) f �1(C \D) ◆ f �1(C)\ f �1(D).

(k) A ✓ f �1(f (A)).

(l) A ◆ f �1(f (A)).

(m) f (f �1(C)) ✓ C.

(n) f (f �1(C)) ◆ C.

2.3 The Real Numbers

The real numbers form the foundation of mathematical analysis. It is worth pointing out
that one can carefully construct the real numbers from the natural numbers. However,
that will not be the approach we take. Instead, we will simply list the axioms that the real
numbers satisfy. Recall that an axiom is a statement that is assumed to be true without
proof. These are the basic building blocks from which all theorems are proved. Our
axioms for the real numbers fall into three categories:

1. Field Axioms: These axioms provide the essential properties of arithmetic involv-
ing addition and subtraction.

2. Order Axioms: These axioms provide the necessary properties of inequalities.

3. Completeness Axiom: This axiom guarantees that the familiar number line rep-
resenting the real numbers does not have any “gaps”. We will not introduce this
axiom until Chapter 3.

Field Axioms 2.51. There exist functions (a,b) 7! a + b and (a,b) 7! ab from R2 to R
satisfying:

(F1) (Associativity for Addition) For all a,b,c 2 R we have (a+ b) + c = a+ (b + c);

(F2) (Commutativity for Addition) For all a,b 2 R, we have a+ b = b + a;

(F3) (Additive Identity) There exists 0 2 R such that for all a 2 R, 0 + a = a;

(F4) (Additive Inverses) For all a 2 R there exists �a 2 R such that a+ (�a) = 0;
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(F5) (Associativity for Multiplication) For all a,b,c 2 R we have (ab)c = a(bc);

(F6) (Commutativity for Multiplication) For all a,b 2 R, we have ab = ba;

(F7) (Multiplicative Identity) There exists 1 2 R such that 1 , 0 and for all a 2 R, 1a = a;

(F8) (Multiplicative Inverses) For all a 2 R \ {0} there exists a�1 2 R such that aa�1 = 1.

(F9) (Distributive Property) For all a,b,c 2 R, a(b + c) = ab + ac;

In the language of abstract algebra, Axioms (F1)–(F4) and (F5)–(F8) make each of R and
R\ {0} an abelian group under addition and multiplication, respectively. Axiom (F9) pro-
vides a way for the operations of addition and multiplication to interact. Collectively,
Axioms (F1)–(F9) make the real numbers a field. It follows from the axioms that the ele-
ments 0 and 1 of R are the unique additive and multiplicative identities. For every a 2 R,
the elements �a and a�1 (as long as a , 0) are also the unique additive and multiplicative
inverses. We will take these facts for granted. For every a,b 2 R and n 2 Z, we define the
following:

• a� b := a+ (�b)

•
a
b
:= ab�1 (for b , 0)

• an :=

8>>>>>>><>>>>>>>:

n
z}|{
aa · · ·a, if n 2 N
1, if n = 0 and a , 0
1
a�n

, if �n 2 N and a , 0

Using the Field Axioms, we could prove each of the statements in the following theorem.
However, we will take each for granted.

Theorem 2.52. For all a,b,c 2 R, we have the following:

(a) a = b if and only if a+ c = b + c;

(b) 0a = 0;

(c) �a = (�1)a;

(d) (�1)2 = 1;

(e) �(�a) = a;

(f) If a , 0, then (a�1)�1 = a;

(g) If a , 0 and ab = ac, then b = c.

(h) If ab = 0, then either a = 0 or b = 0.

Problem 2.53. Carefully prove that for all a,b 2 R, we have (a+ b)(a� b) = a2 � b2.
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Order Axioms 2.54. For a,b,c 2 R, there is a relation < on R satisfying:

(O1) (Trichotomy Law) If a , b, then either a < b or b < a but not both;

(O2) (Transitivity) If a < b and b < c, then a < c;

(O3) If a < b, then a+ c < b + c;

(O4) If a < b and 0 < c, then ac < bc;

Given Axioms (O1)–(O4) above, we say that the real numbers are linearly ordered (or
totally ordered). We call numbers greater than zero positive and those greater than or
equal to zero nonnegative. There are similar definitions for negative and nonpositive.
For a,b 2 R, we define:

• a > b if b < a;

• a  b if a < b or a = b;

• a � b if b  a.

Using the Order Axioms, we can prove many familiar facts.

Problem 2.55. Prove that for all a,b 2 R, if a,b > 0, then a + b > 0, and if a,b < 0, then
a+ b < 0.

The next problem extends Axiom (O3).

Problem 2.56. Prove that for all a,b,c,d 2 R, if a < b and c < d, then a+ c < b + d.

Problem 2.57. For all a 2 R, a > 0 if and only if �a < 0.

Problem 2.58. Prove that if a, b, c, and d are positive real numbers such that a < b and
c < d, then ac < bd.

We will take the following theorem for granted. Both statements can be proved using the
axioms above.

Theorem 2.59. For all a,b 2 R, we have the following:

(a) ab > 0 if and only if either a,b > 0 or a,b < 0;

(b) ab < 0 if and only if a < 0 < b or b < 0 < a.

Problem 2.60. Prove that for all positive real numbers a and b, a < b if an only if a2 < b2.

Consider using three cases when approaching the following problem.

Problem 2.61. Prove that for all a 2 R, we have a2 � 0.

It might come as a surprise that the following result requires proof.

Problem 2.62. Prove that 0 < 1.
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The previous problem together with Problem 2.57 implies that �1 < 0 as you expect. It
also follows from Axiom (O3) that for all n 2 Z, we have n < n + 1. We assume that there
are no integers between n and n+1.

Problem 2.63. Prove that for all a 2 R, if a > 0, then a�1 > 0, and if a < 0, then a�1 < 0.

Problem 2.64. Prove that for all a,b 2 R, if a < b, then �b < �a.

The last few results allow us to take for granted our usual understanding of which real
numbers are positive and which are negative. The next problem yields a result that ex-
tends the previous problem.

Problem 2.65. Prove that for all a,b,c 2 R, if a < b and c < 0, then bc < ac.

We could spend weeks building up from the axioms all of the machinery necessary for
the rest of the course. Instead we will toss in a few additional axioms to save ourselves a
little time.

Additional Order Axioms 2.66. The real numbers satisfy each of the following:

(O5) For every x 2 R, there exists a,b 2 R such that a < x < b;

(O6) For every a,b 2 R, if a < b, there exists x 2 R such that a < x < b (in particular, a+b
2 is

between a and b);

(O7) For every a 2 R, there exists n 2 Z such that n  a < n+1.

Axiom (O7) is sometimes referred to as the Archimedean Principle. It turns out that we
could derive this axiom from the Completeness Axiom, which we will introduce in the
next chapter.

Problem 2.67. Prove that for any positive real number a, there exists N 2 N such that
0 < 1

N < a.

For a,b 2 R with a < b, we define the following intervals:

• (a,b) := {x 2 R | a < x < b}

• (a,1) := {x 2 R | a < x}

• (�1, b) := {x 2 R | x < b}

• [a,b] := {x 2 R | a  x  b}

We analogously define [a,b), (a,b], [a,1), and (�1, b]. Intervals of the form (a,b), (�1, b),
and (a,1) are called open intervals while [a,b], (�1, b], and [a,1) are referred to as
closed intervals. A finite length interval is any interval of the form (a,b), [a,b), (a,b],
and [a,b]. For finite length intervals, a and b are called the endpoints of the interval.
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Notice that Axiom (O5) says that every real number is contained in a finite open interval.
In particular, Axiom (O7) says that every non-integer is contained in an open interval with
consecutive integer endpoints. Axiom (O6) tells us that every open interval is nonempty.
In fact, repeated applications of Axiom (O6) implies that every open interval contains
infinitely many points.

Problem 2.68. Assume that there is a positive element of the preimage of {2} under the
function f (x) = x2 from the reals to the reals. That is, assume

p
2 exists. Prove

p
2 2 (1,2).

Recall that
p
2 is an irrational number. The previous problem provides an example of an

irrational number occurring between a pair of distinct rational numbers. The following
problems are a good challenge to generalize this.

Problem 2.69. Prove that between any two distinct real numbers there is a rational num-
ber.

Problem 2.70. Prove that between any two distinct real numbers there is an irrational
number.

Repeated applications of the previous two problems implies that every open interval con-
tains infinitely many rational numbers and infinitely many irrational numbers. In light
of these two problems, we say that both the rationals and irrationals are dense in every
open interval. In particular, they are dense in the real numbers.

There is a special function that we can now introduce. Given a 2 R, we define the absolute
value of a, denoted |a|, via

|a| :=
8>><>>:
a, if a � 0
�a, if a < 0.

Problem 2.71. Prove that for all a 2 R, |a| � 0 with equality only if a = 0.

Problem 2.72. Prove that for all a,b 2 R, if ±a  b, then |a|  b. Note: Writing ±a  b is an
abbreviation for a  b and �a  b.

Problem 2.73. Prove that for all a 2 R, |a|2 = a2.

Problem 2.74. Prove that for all a 2 R, ±a  |a|.
Problem 2.75. Prove that for all a, r 2 R, |a|  r if and only if �r  a  r.

In the previous problem, it must be the case that r is nonnegative. The letter r was used
because it is the first letter of the word “radius”. If r is positive, we can think of the
interval (�r, r) as the interior of a 1-dimensional circle with radius r centered at 0.

Problem 2.76. Prove that for all a,b 2 R, |ab| = |a||b|.
Consider using Problems 2.74 and 2.75 when attacking the next problem. This result is
extremely useful.

Problem 2.77 (Triangle Inequality). Prove that for all a,b 2 R, |a+ b|  |a|+ |b|.
The next problem is related to the Triangle Inequality

Problem 2.78 (Reverse Triangle Inequality). Prove that for all a,b 2 R, |a� b| � ||a|� |b||.
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