Integration by Substitution

Motivation and Background

Currently, we do not have a technique for integrating most products, quotients, and compositions. Here are a couple that we can integrate:

$$
\int \frac{x^{2}+x}{\sqrt{x}} d x, \quad \int \sec (x) \tan (x) d x
$$

And here are some that we cannot currently integrate (unless you happen to see what the appropriate antiderivative is):

$$
\int x \sqrt{x^{2}+1} d x, \quad \int \sin (x) \cos (x) d x, \quad \int \frac{x}{x^{2}+1} d x
$$

To integrate functions like above, we will utilize a technique called substitution, which involves the use of dummy variable.

Important Note 1. Substitution is a technique that only works in special circumstances, which should become apparent after a little practice.

Important Note 2. If confronted with an integral of a product, quotient, or composition and you cannot integrate it straight away, then substitution may work. In most (but definitely not all) situations, you will pick u to be the inside of the more complicated part.

Examples

Example 3. Compute each of the following integrals.

1. $\int(3 x-1)^{99} d x$
2. $\int 5 x^{2} \sqrt{x^{3}-2} d x$
3. $\int x e^{x^{2}} d x$
4. $\int \sin ^{2}(x) \cos (x) d x$
5. $\int \frac{x}{x^{2}+1} d x$
6. $\int \frac{x^{2}+1}{x} d x$
7. $\int x^{2} \sec ^{2}\left(x^{3}\right) d x$
8. $\int \frac{x}{x^{4}+1} d x$
9. $\int x \sqrt{x-1} d x$
10. $\int \frac{\ln (x)}{x} d x$
11. $\int \frac{\arcsin (x)}{\sqrt{1-x^{2}}} d x$
12. $\int \frac{e^{x}}{e^{2 x}+1} d x$
