
Chapter 4

An Introduction to Subgroups and
Isomorphisms

In this chapter, we’ll continue to utilize our intuitive definition of a group. That is, a
group G is a set of actions that satisfies the following rules.

Rule 1. There is a predefined list of actions that never changes.

Rule 2. Every action is reversible.

Rule 3. Every action is deterministic.

Rule 4. Any sequence of consecutive actions is also an action.

In the previous chapter, we constructed lots of Cayley diagrams for various groups.
To construct a Cayley diagram for a group G, we need to first identify a set of generators,
say S . Recall that our choice of generators is important as changing the generators can
result in a di↵erent Cayley diagram.

In the Cayley diagram forG using S , all the actions ofG are represented by the vertices
of the graph. Each vertex corresponds to a unique action. This does not imply that there
is a unique way to obtain a given action from the generators. Each of the generators
determines an arrow type in the diagram. One way to distinguish the di↵erent arrow
types is by using di↵erent colors. An arrow of a particular color always represents the
same generator.

One of the vertices in the diagram is labeled by the do-nothing action, often denoted
by e. Each of the other vertices are labeled by words that correspond to following arrows
(forwards or backwards) from e to a given vertex. There may be many ways to do this as
each sequence of arrows corresponds to a unique word. So, a vertex could be potentially
labeled by many words. Also, one potentially confusing item is that we read our words
from right to left. That is, the first arrow we follow out of e is the rightmost generator in
the word.
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4.1 Subgroups

Exercise 4.1. Recall the definition of “subset.” What do you think “subgroup” means?
Try to come up with a potential definition. Try not to read any further before doing this.

Before continuing, gather up the following Cayley diagrams:

• Spin1⇥2. There are 3 of these. I drew one for you in Chapter 3 and you discovered
two more in Exercise 3.6.

• S2. See Exercise 3.9.

• R4. See Exercise 3.10.

• D3. There are two of these. See exercises 3.11 and 3.14.

• D4. See Exercise 3.12.

Exercise 4.2. Examine your Cayley diagrams for D4 and R4 and make some observations.
How are they similar and how are they di↵erent? Can you reconcile the similarities and
di↵erences by thinking about the actions of each group?

Hopefully, one of the things you noticed in the previous exercise is that we can “see”
R4 inside of D4 (and hopefully you didn’t just read that before completing the exercise).
You may have used di↵erent colors in each case and maybe even labeled the vertices with
di↵erent words, but the overall structure of R4 is there nonetheless.

Exercise 4.3. If you just pay attention to the configuration of arrows, it appears that there
are two copies of the Cayley diagram for R4 in the Cayley diagram for D4. Isolate these
two copies by ignoring the edges that correspond to the generator s. Paying close attention
to the words that label the vertices from the original Cayley diagram for D4, are either of
these groups in their own right?

Recall that the do-nothing action must always be one of the actions included in a
group. If this didn’t occur to you when doing the previous exercise, you might want to
go back and rethink your answer. Just like in the previous exercise, we can often “see”
smaller groups living inside larger groups. These smaller groups are called subgroups.

Intuitive Definition 4.4. Let G be a group of actions and let H ✓ G. We say that H is a
subgroup if and only if H is a group in its own right. In this case, we write H  G.

In light of Exercise 4.3, we would write R4  D4. The second sub-diagram of D4 that
resembles R4 cannot be a subgroup because it does not contain the do-nothing action.
However, since it looks a lot like R4, we call it a clone of R4. For convenience, we may
also say that a subgroup is a clone of itself.

The next theorem⇤ tells us that if we already have a subset of a group, we only need to
check two of our rules instead of four.
⇤Perhaps we should call this an “Intuitive Theorem” since we are using an intuitive definition of a group.
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Exercise 4.5. Let G be a group of actions and let H ✓ G. If we wanted to determine
whether H is a subgroup of G or not, can we skip checking any of the four rules? Which
rules must we verify?

There are a couple subgroups that every group has.

Theorem 4.6. Let G be a group of actions and suppose that e is the do-nothing action.
Then {e}  G.

Exercise 4.7. Let G be a group and suppose that e is the do-nothing action. What does
the Cayley diagram for the subgroup {e} look like?

Earlier, we referred to subgroups as being “smaller.” However, our definition does not
imply that this has to be the case.

Theorem 4.8. Let G be a group of actions. Then G  G.

We refer to subgroups that are strictly smaller than the whole group as proper sub-
groups.

Lots of groups have been given formal names (e.g., D4, R4, etc.). However, not every
group or subgroup has a name. In this case, it’s useful to have notation to refer to specific
subgroups.

Definition 4.9. Let G be a group of actions and let g1, . . . , gn be distinct actions from G.
We define hg1, . . . , gni to be the smallest subgroup containing g1, . . . , gn. In this case, we call
hg1, . . . , gni the subgroup generated by g1, . . . , gn.

For example, consider r, s, s0 2 D3 (as defined in exercises 3.11 and 3.14). Then hr, si =
hs, s0i = D3. Recall that R4 is the subgroup of D4 consisting of rotations of the square.
Similarly, the group of rotations of an equilateral triangle is called R3. Then using the r
from D3, we have hri = R3, which is a subgroup of D3.

Note that in Definition 4.9, we used a finite number of generators. There’s no reason
we have to do this. That is, we can consider groups/subgroups generated by infinitely
many elements.

Exercise 4.10. Suppose {g1, . . . , gn} is a generating set for a group G.

(a) Explain why {g�11 , . . . , g�1n } is also a generating set for G.

(b) How does the Cayley diagram for G with generating set {g1, . . . , gn} compare to the
Cayley diagram with generating set {g�11 , . . . , g�1n }?

Exercise 4.11. Consider Spin1⇥2.

(a) Can you find the Cayley diagram for ht1i as a subgroup of Spin1⇥2?

(b) Write down all the actions of the subgroup ht1, t2i. Write them as words in t1 and t2.
Can you find the Cayley diagram for ht1, t2i as a subgroup of Spin1⇥2? Can you find
a clone for ht1, t2i?
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One of the benefits of Cayley diagrams is that they are useful for visualizing sub-
groups. However, recall that if we change our set of generators, we might get a very
di↵erent looking Cayley diagram. The upshot of this is that we may be able to see a
subgroup in one Cayley diagram for a given group, but not be able to see it in a Cayley
diagram with a di↵erent set of arrows.

Exercise 4.12. We currently have two di↵erent Cayley diagrams forD3 (see Exercises 3.11
and 3.14).

(a) Can you find the Cayley diagram for hei as a subgroup of D3? Can you see it in both
Cayley diagrams for D3? Can you find all the clones?

(b) Can you find the Cayley diagram for hri = R3 as a subgroup of D3? Can you see it in
both Cayley diagrams? Can you find all the clones?

(c) Find the Cayley diagrams for hsi and hs0i as subgroups of D3. Can you see them in
both Cayley diagrams for D3? Can you find all the clones?

Exercise 4.13. Consider D4. Let h be the action that reflects (i.e., flips over) the square
over the horizontal midline and let v be the action that reflects the square over the vertical
midline. Also, recall that r2 is shorthand for the action rr that does r twice in a row. Which
of the following are subgroups of D4? In each case, justify your answer. If a subset is a
subgroup, try to find a minimal set of generators. Also, determine whether you can see
the subgroups in our Cayley diagram for D4.

(a) {e, r2}

(b) {e,h}

(c) {e,h,v}

(d) {e,h,v, r2}

The subgroup in Exercise 4.13(d) is often referred to as the Klein four-group and is
denoted by V4.

Exercise 4.14. Draw the Cayley diagram for V4 using {v,h} as our set of generators.

Let’s introduce a group we haven’t seen yet. We define the quaternion group to be the
groupQ8 = {1,�1, i,�i, j,�j,k,�k} having the Cayley diagram with generators i, j,�1 given
in Figure 4.1. In this case, 1 is the do-nothing action.

Notice that I didn’t mention what the actions actually do. For now, let’s not worry
about that. The relationship between the arrows and vertices tells us everything we need
to know. Also, let’s take it for granted that Q8 actually is a group.

Exercise 4.15. Consider the Cayley diagram for Q8 given in Figure 4.1.

(a) Which arrows correspond to which generators in our Cayley diagram for Q8?

(b) What is i2 equal to? That is, what element of {1,�1, i,�i, j,�j,k,�k} is i2 equal to?
How about i3, i4, and i5?
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Figure 4.1. Cayley diagram for Q8 with generating set {�1, i, j}.

e s

Figure 4.2. Cayley diagram for S2 with generator s.

(c) What are j2, j3, j4, and j5 equal to?

(d) What is (�1)2 equal to?

(e) What is ij equal to? How about ji?

(f) Can you determine what k2 and ik are equal to?

(g) Can you identify a generating set consisting of only two elements? Can you find
more than one?

(h) What subgroups of Q8 can you see in the Cayley diagram in Figure 4.1?

(i) Find a subgroup of Q8 that you cannot see in the Cayley diagram.

4.2 Isomorphisms

By now you’ve probably seen enough examples of Cayley diagrams to witness some pat-
terns appearing over and over again. One of the things you’ve probably noticed is that
parts of some Cayley diagrams look just like parts of other Cayley diagrams.

Recall from Exercise 3.9 that S2 is the group that acts on two coins by swapping their
positions (but not flipping them over). We defined s to be the action that swaps the left
and right coins and as usual e is the do-nothing action. The Cayley diagram for S2 with
generator s is given in Figure 4.2.

If you look back at all the Cayley diagrams you’ve encountered, you’ll notice that
many of them contained chunks that resemble the Cayley diagram for S2 with generator
s. In particular, in the Cayley diagrams for Spin1⇥2, D3, D4, and Q8 that we’ve seen,
it is easy to identify the portions that “look like” S2. For example, if you isolate the
Cayley diagram for the subgroup h�1i = {1,�1} in Q8, we see that it looks just like the
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Cayley diagram for S2, except the labels are not identical. The clones of the subgroup
h�1i = {1,�1} in Q8 look like S2, as well, but they do not contain the do-nothing action.

The one thing that is di↵erent about the Cayley diagram for S2 and the Cayley diagram
for h�1i is that the labels are di↵erent. If we set the Cayley diagram for S2 on top of the
Cayley diagram for h�1i such that the do-nothing actions match up, then s and �1 would
correspond to each other. In other words, the two Cayley diagrams are identical up to
relabeling the vertices.

In this case, we say that S2 and the subgroup h�1i ofQ8 are isomorphic under the cor-
respondence e$ 1 and s$�1. This one-to-one correspondence between the two groups
is called an isomorphism, which is depicted in Figure 4.3. Note that I’ve recolored the
arrow in S2 so that it matches the corresponding arrow color of h�1i. This isn’t necessary,
but it makes the correspondence more obvious.

1 i

kj

�1
�i

�k�j

e sQ8

S2

Figure 4.3. Isomorphism between h�1i Q8 and S2.

What this means is that these two groups have the same structure and characteristics.
Or, in other words, these two groups essentially do the “same kind” of thing. Clearly,
the two do-nothing actions behave the same way. Also, s and �1 both have the property
that doing the action twice results in having done nothing (i.e., each element is its own
reverse). Since there are only two elements, there isn’t anything else to check. In groups
with more elements, things can get much more complicated.

It is important to point out that S2 and h�1i (in Q8) are not equal. But they have the
same structure. Identifying when two groups have the same structure (i.e., isomorphic)
is an important pursuit in group theory.

If you look at the original Cayley diagram for Spin1⇥2 (with generators s, t1, t2), we
can see three subgroups that look like S2; namely hsi, ht1i, and ht2i. Each of these three
subgroups is isomorphic to S2.

There is one serious potential for confusion here. Notice that there is an s in S2 and an s
in Spin1⇥2. Despite having identical names, they are not the same element. Since we only
have 26 letters in our alphabet this sort of thing is unavoidable. Under the isomorphism
between S2 and the subgroup hsi in Spin1⇥2, the two elements with the same name match
up. That is, these two elements are the ones in each group with the same behavior.
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Exercise 4.16. Can you find any other subgroups or groups that are isomorphic to S2?

Let’s write down an o�cial definition of isomorphic.

Definition 4.17. Let G and G0 be two groups. We say that G and G0 are isomorphic if
there exist generating sets S and S 0 forG andG0, respectively, such that the corresponding
Cayley diagrams are identical where we ignore the labels on the vertices and recolor the
edges if necessary. In this case, we write G � G0. Otherwise, we say that G and G0 are not
isomorphic. If G and G0 are isomorphic, then the one-to-one correspondence determined
by matching up the corresponding generators and respecting arrow paths is called an
isomorphism.

The last sentence in the definition above might be a bit much to handle at the moment,
but as we construct more examples, the concept should become clear. The general idea is
to take two identical Cayley diagrams (ignoring labels) for G and G0 and then set one on
top of the other so that the vertices and arrows of the same color match up. This should
be done so that the do-nothing actions correspond to each other. Then it becomes clear
which actions in G correspond to which actions in G0. There might be many ways to do
this.

Consider the groupR4 with generator r (rotation by 90� clockwise). Now, take a look at
the Cayley diagram for Q8 with generators i, j,�1. It should be easy to convince yourself
that R4 is isomorphic to both hii = {1, i,�i,�1} and hji = {1, j,�j,�1}. However, you have
to do some rearranging of one of the diagrams to set one on top of the other. Let’s just
focus on hii.

How do R4 and hiimatch up? We want to pair elements in each group with an element
in the other group that has the same behavior. Clearly, e and 1 match up since these
are the two do-nothing actions. Also, the reason why we noticed these two groups were
isomorphic is because their Cayley diagrams looked the same. Since each Cayley diagram
only had one arrow type determined by r and i, we should pair these two elements. Now,
following the arrows around the diagram, we see that r2 must pair with i2 = �1 and r3

corresponds to i3 = �i. In summary, the isomorphism between R4 and hii (in Q8) is given
by e$ 1, r$ i, r2$�1, and r3$�i, which is depicted in Figure 4.4. Note that this time
we have not recolored the edges so that they match. Nonetheless, the correspondence
should be clear.

Now, take a look at the Cayley diagram for D4 with generating set {r, s}. As we noticed
in Exercise 4.2, R4 is a subgroup of D4. We could say that this subgroup is isomorphic to
R4, but in this case, we can say something even stronger: they are equal!

Before continuing, we need to emphasize an important point. If the Cayley diagram
for one group does not look like the Cayley diagram for another group, then that does
not immediately imply that the groups are not isomorphic. The issue is that perhaps we
could choose appropriate generating sets for each group so that the Cayley diagrams do
look alike. For example, notice that our standard Cayley diagram for R4 does not look
like the Cayley diagram that you constructed for V4 in Exercise 4.14. This does not imply
that these two groups are not isomorphic. We would need to do some more work in order
to determine whether the two groups are isomorphic or not. You will get a chance to do
this in Exercise 4.21.
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Figure 4.4. Isomorphism between hii Q8 and R4.

It turns out that there is a fancy word for the size of a group.

Definition 4.18. If G is a group with n distinct actions, then we say that G has order n
and write |G| = n. If G contains infinitely many elements, then we say G has infinite order
and write |G| =1.

Exercise 4.19. Find the orders of the following groups: S2, Spin1⇥2, Spin3⇥3, R4, D3, D4,
V4, and Q8.

Theorem 4.20. Suppose G and G0 are two groups of actions such that G � G0. Then
|G| = |G0 |.

Unfortunately, the converse of the previous theorem is not true in general. That is,
two groups that have the same order may or may not be isomorphic.

Loosely speaking, if one group has a property that the other does not have, then the
two groups cannot be isomorphic. For example, if one group has the property that ev-
ery pair of actions commutes (i.e., the order† of the actions does not matter), but another
group has a pair of actions that do not commute, then the two groups cannot be isomor-
phic. Moreover, if one group contains an action that requires aminimum of k applications
to get back to the do-nothing action, but a second group does not have such an element,
then the two groups cannot be isomorphic.

Justifying these two claims takes a bit of work and for now, we’ll put that on hold.
For the time being, if you don’t see why these claims about when two groups are not
isomorphic are true, just take them on faith and we will return to the issue in a later
chapter. Feel free to use these ideas in the exercises that follow.

Problem 4.21. Determine whether R4 and V4 are isomorphic. Justify your answer. If they
are isomorphic, specify the isomorphism by listing the correspondence of elements. If
they are not isomorphic, explain why.

Problem 4.22. Consider the group given by the Cayley diagram for R6 that was given in
Exercise 3.15. We can think of R6 as the rotation group for a regular hexagon. Determine

†Don’t confuse the word “order” in this sentence with the order of a group.
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whether R6 and D3 are isomorphic. Justify your answer. If they are isomorphic, specify
the isomorphism by listing the correspondence of elements. If they are not isomorphic,
explain why.

Exercise 4.23. Consider two light switches on a wall side by side. Consider the group of
actions that consists of all possible actions that you can do to the two light switches. For
example, one action is toggle the left light switch while leaving the right alone. Let’s call
this group L2.

(a) How many distinct actions does L2 have?

(b) Can you find a minimal generating set for L2? If so, give these actions names and
then write all of the actions of L2 as words in your generator(s).

(c) Using your generators from part (b), draw a Cayley diagram for L2.

Problem 4.24. Determine whether L2 and V4 are isomorphic. Justify your answer. If they
are isomorphic, specify the isomorphism by listing the correspondence of elements. If
they are not isomorphic, explain why.

Problem 4.25. Determine whether Q8 and D4 are isomorphic. Justify your answer. If
they are isomorphic, specify the isomorphism by listing the correspondence of elements.
If they are not isomorphic, explain why.

Problem 4.26. Determine whether Spin1⇥2 andD4 are isomorphic. Justify your answer. If
they are isomorphic, specify the isomorphism by listing the correspondence of elements.
If they are not isomorphic, explain why.

Exercise 4.27. Consider the group that acts on three coins that are in a row by rearranging
their positions (but not flipping them over). This group is called S3. Number the positions
of the coins (not the coins themselves) 1, 2, 3 from left to right. Let s1 be the action that
swaps the coins in positions 1 and 2 and let s2 be the action that swaps the coins in
positions 2 and 3.

(a) The group S3 consists of 6 actions, which we can generate with s1 and s2. Write all
6 actions as words in s1 and s2.

(b) Using s1 and s2 as generators, draw a Cayley diagram for S3.

Problem 4.28. Determine whether S3 andD3 are isomorphic. Justify your answer. If they
are isomorphic, specify the isomorphism by listing the correspondence of elements. If
they are not isomorphic, explain why. Don’t forget that we’ve drawn two di↵erent Cayley
diagrams for D3.
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