Homework 11

Abstract Algebra I

Complete the following problems. Note that you should only use results that we've discussed so far this semester.

Problem 1. Consider the ring $M_2(\mathbb{R})$ (i.e., the ring of 2×2 matrices with real number entries, where the operation is matrix multiplication). Recall that if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then det(A) = ad - bc. Is det a ring homomorphism? Justify your answer.

Problem 2. Define $\phi : \mathbb{Z}_4 \to \mathbb{Z}_{12}$ via $\phi(x) = 3x$. Is ϕ a ring homomorphism? Justify your answer.

Problem 3. Consider the ring $M_2(\mathbb{Z})$. Let $I = \left\{ \begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix} \mid a, c \in \mathbb{Z} \right\}$. Show that *I* is a left ideal, but not a right ideal.

Problem 4. Let *R* be a ring. If there exists a positive integer *n* such that

$$\underbrace{a+a+\dots+a}_{n}=0$$

for all $a \in R$, then the least such positive integer is called the **characteristic** of *R*. If no such positive integer exists, then *R* is of characteristic 0. Find the characteristic of each of the following rings.

- (a) ℤ₆
- (b) \mathbb{Z}
- (c) \mathbb{R}

Problem 5. Prove one of the following.

- (a) Prove that the characteristic of an integral domain is either 0 or prime.
- (b) Let *R* be a commutative ring with prime characteristic *p*. Prove that if $x, y \in R$, then $(x+y)^p = x^p + y^p$.

Problem 6. Consider $E = \{0, 2, 4, 6, 8\} \subseteq \mathbb{Z}_{10}$. Find the field of fractions of *E* in \mathbb{Z}_{10} .

Problem 7. Define $\phi : \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ via $\phi(x) = 6x$.

- (a) Prove that ϕ is a ring homomorphism.
- (b) Determine whether $\mathbb{Z}_{10}/\ker(\phi)$ is a field.
- (c) Is ker(ϕ) a maximal ideal of \mathbb{Z}_{10} ?

Problem 8. A **simple ring** is a ring with no nonzero proper 2-sided ideals. If *R* is a ring, then the **center** of *R* is defined to be $Z(R) := \{x \in R \mid rx = xr \text{ for all } r \in R\}$. Prove that the center of a simple ring with 1 is a field. *Note:* You must first show that the center is a subring.

Problem 9. Let *R* be a ring and let *I* be a right ideal of *R*. Suppose there exists an element $a \in R$ such that $a^2 = a$ (such an element is called **idempotent**). Let $J = \{x \in I \mid ax = 0\}$. Prove that *J* is a right ideal of *R*.

Problem 10. Let $\phi : R \to S$ be a ring homomorphism, where *R* is a ring with 1, call it 1_R .

- (a) Prove that $\phi(1_R)$ is the multiplicative identity in $\phi(R)$.
- (b) Provide an example of a ring homomorphism where *S* has a multiplicative identity that is not equal to $\phi(1_R)$ or prove that such an example does not exist.

Problem 11. Prove one of the following.

- (a) Let *R* be a commutative ring with 1. The **radical** of an ideal *I* in *R* is defined to be $\sqrt{I} := \{x \in R \mid x^n \in I \text{ for some } n \in \mathbb{Z}^+\}$. Prove that every prime ideal is radical.
- (b) Let *R* be a commutative ring with 1 and let U(R) be the group of units in *R*. Prove that *R* has a unique maximal ideal iff $R \setminus U(R)$ is an ideal. *Note:* You may use Theorem 38 from our class notes.

Problem 12. Prove one of the following.

- (a) Prove that any subfield of \mathbb{R} must contain \mathbb{Q} .
- (b) Prove that a quotient of a principal ideal domain by a prime ideal is still a principal ideal domain.