Homework 11

Abstract Algebra I

Complete the following problems. Note that you should only use results that we've discussed so far this semester.

Problem 1. Consider the ring $M_{2}(\mathbb{R})$ (i.e., the ring of 2×2 matrices with real number entries, where the operation is matrix multiplication). Recall that if $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $\operatorname{det}(A)=a d-b c$. Is det a ring homomorphism? Justify your answer.

Problem 2. Define $\phi: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{12}$ via $\phi(x)=3 x$. Is ϕ a ring homomorphism? Justify your answer.

Problem 3. Consider the ring $M_{2}(\mathbb{Z})$. Let $I=\left\{\left.\left(\begin{array}{ll}a & 0 \\ c & 0\end{array}\right) \right\rvert\, a, c \in \mathbb{Z}\right\}$. Show that I is a left ideal, but not a right ideal.

Problem 4. Let R be a ring. If there exists a positive integer n such that

$$
\underbrace{a+a+\cdots+a}_{n}=0
$$

for all $a \in R$, then the least such positive integer is called the characteristic of R. If no such positive integer exists, then R is of characteristic 0 . Find the characteristic of each of the following rings.
(a) \mathbb{Z}_{6}
(b) \mathbb{Z}
(c) \mathbb{R}

Problem 5. Prove one of the following.
(a) Prove that the characteristic of an integral domain is either 0 or prime.
(b) Let R be a commutative ring with prime characteristic p. Prove that if $x, y \in R$, then $(x+y)^{p}=x^{p}+y^{p}$.

Problem 6. Consider $E=\{0,2,4,6,8\} \subseteq \mathbb{Z}_{10}$. Find the field of fractions of E in \mathbb{Z}_{10}.
Problem 7. Define $\phi: \mathbb{Z}_{10} \rightarrow \mathbb{Z}_{10}$ via $\phi(x)=6 x$.
(a) Prove that ϕ is a ring homomorphism.
(b) Determine whether $\mathbb{Z}_{10} / \operatorname{ker}(\phi)$ is a field.
(c) Is $\operatorname{ker}(\phi)$ a maximal ideal of \mathbb{Z}_{10} ?

Problem 8. A simple ring is a ring with no nonzero proper 2 -sided ideals. If R is a ring, then the center of R is defined to be $Z(R):=\{x \in R \mid r x=x r$ for all $r \in R\}$. Prove that the center of a simple ring with 1 is a field. Note: You must first show that the center is a subring.

Problem 9. Let R be a ring and let I be a right ideal of R. Suppose there exists an element $a \in R$ such that $a^{2}=a$ (such an element is called idempotent). Let $J=\{x \in I \mid a x=0\}$. Prove that J is a right ideal of R.

Problem 10. Let $\phi: R \rightarrow S$ be a ring homomorphism, where R is a ring with 1 , call it 1_{R}.
(a) Prove that $\phi\left(1_{R}\right)$ is the multiplicative identity in $\phi(R)$.
(b) Provide an example of a ring homomorphism where S has a multiplicative identity that is not equal to $\phi\left(1_{R}\right)$ or prove that such an example does not exist.

Problem 11. Prove one of the following.
(a) Let R be a commutative ring with 1 . The radical of an ideal I in R is defined to be $\sqrt{I}:=\left\{x \in R \mid x^{n} \in I\right.$ for some $\left.n \in \mathbb{Z}^{+}\right\}$. Prove that every prime ideal is radical.
(b) Let R be a commutative ring with 1 and let $U(R)$ be the group of units in R. Prove that R has a unique maximal ideal iff $R \backslash U(R)$ is an ideal. Note: You may use Theorem 38 from our class notes.

Problem 12. Prove one of the following.
(a) Prove that any subfield of \mathbb{R} must contain \mathbb{Q}.
(b) Prove that a quotient of a principal ideal domain by a prime ideal is still a principal ideal domain.

