Homework 2

Abstract Algebra I

Complete the following problems.
Problem 1. Determine whether each of the following binary operations is (i) associative and (ii) commutative.
(a) The operation \star on \mathbb{R} defined via $a \star b=a+b+a b$.
(b) The operation \circ on \mathbb{Q} defined via $a \circ b=\frac{a+b}{5}$.
(c) The operation \odot on $\mathbb{Z} \times \mathbb{Z}$ defined via $(a, b) \odot(c, d)=(a d+b c, b d)$.
(d) The operation \circledast on $\mathbb{Q} \backslash\{0\}$ defined via $a \circledast b=\frac{a}{b}$.
(e) The operation \ominus on $\mathbb{R} / I:=\{x \in \mathbb{R} \mid 0 \leq x<1\}$ defined via $a \ominus b=a+b-\lfloor a+b\rfloor$ (i.e., $a \ominus b$ is the fractional part of $a+b$).

Problem 2. Determine which of the following sets are groups under the given operation. Justify your answer.
(a) $\mathbb{Z} / n \mathbb{Z}$ under multiplication $\bmod n$.
(b) Set of rational numbers in lowest terms whose denominators are odd under addition. Note: Since we can write $0=0 / 1,0$ is included in this set.
(c) Set of rational numbers in lowest terms whose denominators are even together with 0 under addition.
(d) Set of rational numbers of absolute value less than 1 under addition.
(e) \mathbb{R} / I under Θ as defined in Problem 1(e).

Problem 3. Let $G=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$. Prove one of the following.
(a) The set G is a group under addition.
(b) If $H=G \backslash\{0\}$, then H is a group under multiplication.

Problem 4. Assume G is a group and let $x \in G$. Prove one of the following.
(a) If $a, b \in \mathbb{Z}$, then $x^{a+b}=x^{a} x^{b}$.
(b) If $a, b \in \mathbb{Z}$, then $\left(x^{a}\right)^{b}=x^{a b}$.

Don't forget to handle the case when either a or b is nonpositive.
Problem 5. Assume G is a group and let $a, b \in G$. Is it true that $(a b)^{n}=a^{n} b^{n}$? If not, under what minimal conditions would it be true? Prove the statement that you think is true.

Problem 6. Assume G is a group. Prove that if $x^{2}=e$ for all $x \in G$, then G is abelian.
Problem 7. Assume (G, \star) is a group and let H be a nonempty subset of G that is (i) closed under \star and (ii) closed under inverses (i.e., for all $h, k \in H$, (i) $h k \in H$ and (ii) $h^{-1} \in H$). Prove that H is a group under \star in its own right. Such a subset is called a subgroup.

Problem 8. Assume G is a group. Prove that if $x \in G$ such that $x^{n} \neq e$ for all $n \in \mathbb{Z}^{+}$, then $x^{i} \neq x^{j}$ for all $i \neq j$.
Problem 9. Assume $G=\{e, a, b, c\}$ is a group under \star with the property that $x^{2}=x^{4}$ for all $x \in G$ (where e is the identity). Complete the following group table, where $x \star y$ is defined to be the entry in the row labeled by x and the column labeled by y.

\star	e	a	b	c
e	e	a	b	c
a	a			
b	b			
c	c			

Is your table unique? That is, did you have to fill it out the way you did? Deduce that G is abelian.

Problem 10. (Optional) Assume G is a finite group. Prove that every element of G must appear exactly once in every row and column of the group table for G. (Of course, we are not counting the row and column headings.)

