Introduction to Rings

Definitions and Examples

This section of notes roughly follows Sections 7.1-7.3 in Dummit and Foote.
Recall that a group is a set together with a single binary operation, which together satisfy a few modest properties. Loosely speaking, a ring is a set together with two binary operations (called addition and multiplication) that are related via a distributive property.

Definition 1. A ring R is a set together with two binary operations + and \times (called addition and multiplication, respectively) satisfying the following:
(i) $(R,+)$ is an abelian group.
(ii) \times is associative: $(a \times b) \times c=a \times(b \times c)$ for all $a, b, c \in R$.
(iii) The distributive property holds: $a \times(b+c)=(a \times b)+(a \times c)$ and $(a+b) \times c=(a \times c)+(b \times c)$ for all $a, b, c \in R$.

Note 2. We make a couple comments about notation.
(1) We write $a b$ in place $a \times b$.
(2) The additive inverse of the ring element $a \in R$ is denoted $-a$.

Theorem 3. Let R be a ring. Then for all $a, b \in R$:
(1) $0 a=a 0=0$
(2) $(-a) b=a(-b)=-(a b)$
(3) $(-a)(-b)=a b$

Definition 4. A ring R is called commutative if multiplication is commutative.
Definition 5. A ring R is said to have an identity (or called a ring with 1) if there is an element $1 \in R$ such that $1 \times a=a \times 1=a$ for all $a \in R$.

Theorem 6. If R is a ring with 1 , then the multiplicative identity is unique and $-a=(-1) a$.
Question 7. Requiring $(R,+)$ to be a group is fairly natural, but why require $(R,+)$ to be abelian? Here's one reason. Suppose R has a 1 . Compute $(1+1)(a+b)$ in two different ways.

Definition 8. A ring R with 1 (with $1 \neq 0$) is called a division ring if every nonzero element in R has a multiplicative inverse: if $a \in R \backslash\{0\}$, then there exists $b \in R$ such that $a b=b a=1$.

Definition 9. A commutative division ring is called a field.
Definition 10. A nonzero element a in a ring R is called a zero divisor if there is a nonzero element $b \in R$ such that either $a b=0$ or $b a=0$.

Theorem 11 (Cancellation Law). Assume $a, b, c \in R$ such that a is not a zero divisor. If $a b=a c$, then either $a=0$ or $b=c$.

Definition 12. Assume R is a ring with 1 with $1 \neq 0$. An element $u \in R$ is called a unit in R if u has a multiplicative inverse (i.e., there exists $v \in R$ such that $u v=v u=1$. The set of units in R is denoted R^{\times}.

Theorem 13. If $R^{\times} \neq \emptyset$, then R^{\times}forms a group under multiplication.
Note 14. We make a few observations.
(1) A field is a commutative ring F with identity $1 \neq 0$ in which every nonzero element is a unit, i.e., $F^{\times}=F \backslash\{0\}$.
(2) Zero divisors can never be units.
(3) Fields never have zero divisors.

Definition 15. A commutative ring with identity $1 \neq 0$ is called an integral domain if it has no zero divisors.

Note 16. The Cancellation Law (Theorem 11) holds in integral domains for any three elements.
Corollary 17. Any finite integral domain is a field.
Proof. For any nonzero $a \in R$, define $f_{a}: R \rightarrow R$ via $f_{a}(x)=a x$. If R is an integral domain, the Cancellation Law forces f_{a} to be injective. If R is finite, then f_{a} is also surjective. In this case, there exists $b \in R$ such that $a b=1$.

Example 18. Here are some examples of rings. Details left as an exercise.
(1) Zero Ring: If $R=\{0\}$, we can turn R into a ring in the obvious way. The zero ring is a finite commutative ring with 1 . It is the only ring where the additive and multiplicative identities are equal. The zero ring is not a division ring, not a field, and not an integral domain.
(2) Trivial Ring: Given any abelian group R, we can turn R into a ring by defining multiplication via $a b=0$ for all $a, b \in R$. Trivial rings are commutative rings in which every nonzero element is a zero divisor. Hence a trivial ring is not a division ring, not a field, and not a integral domain.
(3) The integers \mathbb{Z} form a ring under the usual operations of addition and multiplication. The integers form an integral domain, but \mathbb{Z} is not a division ring, and hence not a field.
(4) The rational numbers \mathbb{Q}, the real numbers \mathbb{R}, and the complex numbers \mathbb{C} are fields under the usual operations of addition and multiplication.
(5) For $n \geq 1$, the set \mathbb{Z}_{n} is a commutative ring with 1 under the operations of addition and multiplication $\bmod n$. The group of units \mathbb{Z}_{n}^{\times}is the set of elements in \mathbb{Z}_{n} that are relatively prime to n. All other nonzero elements are zero divisors. It turns out that \mathbb{Z}_{n} forms a finite field iff n is prime.
(6) The set of even integers $2 \mathbb{Z}$ forms a commutative ring under the usual operations of addition and multiplication. However, $2 \mathbb{Z}$ does not have a 1 , and hence cannot be a division ring nor a field nor an integral domain.
(7) Polynomial Ring: Fix a commutative ring R. Let $R[x]$ denote the set of polynomials in the variable x with coefficients in R. Then $R[x]$ is a commutative ring with 1 . The units of $R[x]$ are exactly the units of R (if there are any). So, $R[x]$ is never a division ring nor a field. However, if R is an integral domain, then so is $R[x]$.
(8) Matrix Ring: Fix a ring R and let n be a positive integer. Let $M_{n}(R)$ be the set of $n \times n$ matrices with entries from R. Then $M_{n}(R)$ forms a ring under ordinary matrix addition and multiplication. If R is nontrivial and $n \geq 2$, then $M_{n}(R)$ always has zero divisors and $M_{n}(R)$ is not commutative even if R is. If R has a 1 , then the matrix with 1's down the diagonal and 0 's elsewhere is the multiplicative identity in $M_{n}(R)$. In this case, the group of units is the set of invertible $n \times n$ matrices, denoted $G L_{n}(R)$ and called the general linear group of degree n over R.
(9) Quadratic Field: Define $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$. It turns out that $\mathbb{Q}(\sqrt{2})$ is a field. In fact, we can replace 2 with any rational number that is not a perfect square in \mathbb{Q}.
(10) Hamilton Quaternions: Define $\mathbb{H}=\left\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}, i, j, k \in Q_{8}\right\}$ Then \mathbb{H} forms a ring, where addition is definite componentwise in i, j, and k and multiplication is defined by expanding products and the simplifying using the relations of Q_{8}. It turns out that \mathbb{H} is a non-commutative ring with 1 .

Definition 19. A subring of a ring R is a subgroup of R that is closed under multiplication.
Note 20. The property "is a subring" is clearly transitive. To show that a subset S of a ring R is a subring, it suffices to show that $S \neq \emptyset, S$ is closed under subtraction, and S is closed under multiplication.

Example 21. Here are a few quick examples.
(1) \mathbb{Z} is a subring of \mathbb{Q}, which is a subring of \mathbb{R}, which in turn is a subring of \mathbb{C}.
(2) $2 \mathbb{Z}$ is a subring of \mathbb{Z}.
(3) The set $\mathbb{Z}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$ is a subring of $\mathbb{Q}(\sqrt{2})$.
(4) The ring R is a subring of $R[x]$ if we identify R with set of constant functions.
(5) The set of polynomials with zero constant term in $R[x]$ is a subring of $R[x]$.
(6) $\mathbb{Z}[x]$ is a subring of $\mathbb{Q}[x]$.
(7) \mathbb{Z}_{n} is not a subring of \mathbb{Z}.

Definition 22. Let R and S be rings. A ring homomorphism is a map $\phi: R \rightarrow S$ satisfying
(i) $\phi(a+b)=\phi(a)+\phi(b)$
(ii) $\phi(a b)=\phi(a) \phi(b)$
for all $a, b \in R$. The kernel of ϕ is defined via $\operatorname{ker}(\phi)=\{a \in R \mid \phi(a)=0\}$. If ϕ is a bijection, then ϕ is called an isomorphism, in which case, we say that R and S are isomorphic rings and write $R \cong S$.

Example 23.

(1) For $n \in \mathbb{Z}$, define $\phi_{n}: \mathbb{Z} \rightarrow \mathbb{Z}$ via $\phi_{n}(x)=n x$. We see that $\phi_{n}(x+y)=n(x+y)=n x+n y=$ $\phi_{n}(x)+\phi_{n}(y)$. However, $\phi_{n}(x y)=n(x y)$ while $\phi_{n}(x) \phi_{n}(y)=(n x)(n y)=n^{2} x y$. It follows that ϕ_{n} is a ring homomorphism exactly when $n \in\{0,1\}$.
(2) Define $\phi: \mathbb{Q}[x] \rightarrow \mathbb{Q}$ via $\phi(p(x))=p(0)$ (called evaluation at 0). It turns out that ϕ is a ring homomorphism, where $\operatorname{ker}(\phi)$ is the set of polynomials with 0 constant term.

Theorem 24. Let $\phi: R \rightarrow S$ be a ring homomorphism.
(1) $\phi(R)$ is a subring of S.
(2) $\operatorname{ker}(\phi)$ is a subring of R.

In fact, we can say something even stronger about the kernel of a ring homomorphism, which will lead us to the notion of an ideal.

Theorem 25. Let $\phi: R \rightarrow S$ be a ring homomorphism. If $\alpha \in \operatorname{ker}(\phi)$ and $r \in R$, then $\alpha r, r \alpha \in$ $\operatorname{ker}(\phi)$. That is, $\operatorname{ker}(\phi)$ is closed under multiplication by elements of R.

