Introduction to Rings

Definitions and Examples

This section of notes roughly follows Sections 7.1–7.3 in Dummit and Foote.

Recall that a group is a set together with a single binary operation, which together satisfy a few modest properties. Loosely speaking, a ring is a set together with two binary operations (called addition and multiplication) that are related via a distributive property.

Definition 1. A ring *R* is a set together with two binary operations + and \times (called **addition** and **multiplication**, respectively) satisfying the following:

- (i) (*R*, +) is an abelian group.
- (ii) × is associative: $(a \times b) \times c = a \times (b \times c)$ for all $a, b, c \in R$.
- (iii) The **distributive property** holds: $a \times (b + c) = (a \times b) + (a \times c)$ and $(a + b) \times c = (a \times c) + (b \times c)$ for all $a, b, c \in R$.

Note 2. We make a couple comments about notation.

- (1) We write ab in place $a \times b$.
- (2) The additive inverse of the ring element $a \in R$ is denoted -a.

Theorem 3. Let *R* be a ring. Then for all $a, b \in R$:

- (1) 0a = a0 = 0
- (2) (-a)b = a(-b) = -(ab)
- (3) (-a)(-b) = ab

Definition 4. A ring *R* is called **commutative** if multiplication is commutative.

Definition 5. A ring *R* is said to have an **identity** (or called a **ring with 1**) if there is an element $1 \in R$ such that $1 \times a = a \times 1 = a$ for all $a \in R$.

Theorem 6. If *R* is a ring with 1, then the multiplicative identity is unique and -a = (-1)a.

Question 7. Requiring (R, +) to be a group is fairly natural, but why require (R, +) to be abelian? Here's one reason. Suppose *R* has a 1. Compute (1 + 1)(a + b) in two different ways.

Definition 8. A ring *R* with 1 (with $1 \neq 0$) is called a **division ring** if every nonzero element in *R* has a multiplicative inverse: if $a \in R \setminus \{0\}$, then there exists $b \in R$ such that ab = ba = 1.

Definition 9. A commutative division ring is called a **field**.

Definition 10. A nonzero element *a* in a ring *R* is called a **zero divisor** if there is a nonzero element $b \in R$ such that either ab = 0 or ba = 0.

Theorem 11 (Cancellation Law). Assume $a, b, c \in R$ such that a is not a zero divisor. If ab = ac, then either a = 0 or b = c.

Definition 12. Assume *R* is a ring with 1 with $1 \neq 0$. An element $u \in R$ is called a **unit** in *R* if *u* has a multiplicative inverse (i.e., there exists $v \in R$ such that uv = vu = 1. The set of units in *R* is denoted R^{\times} .

Theorem 13. If $R^{\times} \neq \emptyset$, then R^{\times} forms a group under multiplication.

Note 14. We make a few observations.

- (1) A field is a commutative ring *F* with identity $1 \neq 0$ in which every nonzero element is a unit, i.e., $F^{\times} = F \setminus \{0\}$.
- (2) Zero divisors can never be units.
- (3) Fields never have zero divisors.

Definition 15. A commutative ring with identity $1 \neq 0$ is called an **integral domain** if it has no zero divisors.

Note 16. The Cancellation Law (Theorem 11) holds in integral domains for any three elements.

Corollary 17. Any finite integral domain is a field.

Proof. For any nonzero $a \in R$, define $f_a : R \to R$ via $f_a(x) = ax$. If R is an integral domain, the Cancellation Law forces f_a to be injective. If R is finite, then f_a is also surjective. In this case, there exists $b \in R$ such that ab = 1.

Example 18. Here are some examples of rings. Details left as an exercise.

- (1) **Zero Ring:** If $R = \{0\}$, we can turn R into a ring in the obvious way. The zero ring is a finite commutative ring with 1. It is the only ring where the additive and multiplicative identities are equal. The zero ring is not a division ring, not a field, and not an integral domain.
- (2) **Trivial Ring:** Given any abelian group *R*, we can turn *R* into a ring by defining multiplication via ab = 0 for all $a, b \in R$. Trivial rings are commutative rings in which every nonzero element is a zero divisor. Hence a trivial ring is not a division ring, not a field, and not a integral domain.
- (3) The integers \mathbb{Z} form a ring under the usual operations of addition and multiplication. The integers form an integral domain, but \mathbb{Z} is not a division ring, and hence not a field.
- (4) The rational numbers \mathbb{Q} , the real numbers \mathbb{R} , and the complex numbers \mathbb{C} are fields under the usual operations of addition and multiplication.
- (5) For $n \ge 1$, the set \mathbb{Z}_n is a commutative ring with 1 under the operations of addition and multiplication mod n. The group of units \mathbb{Z}_n^{\times} is the set of elements in \mathbb{Z}_n that are relatively prime to n. All other nonzero elements are zero divisors. It turns out that \mathbb{Z}_n forms a finite field iff n is prime.
- (6) The set of even integers 2Z forms a commutative ring under the usual operations of addition and multiplication. However, 2Z does not have a 1, and hence cannot be a division ring nor a field nor an integral domain.

- (7) **Polynomial Ring:** Fix a commutative ring *R*. Let R[x] denote the set of polynomials in the variable *x* with coefficients in *R*. Then R[x] is a commutative ring with 1. The units of R[x] are exactly the units of *R* (if there are any). So, R[x] is never a division ring nor a field. However, if *R* is an integral domain, then so is R[x].
- (8) **Matrix Ring:** Fix a ring R and let n be a positive integer. Let $M_n(R)$ be the set of $n \times n$ matrices with entries from R. Then $M_n(R)$ forms a ring under ordinary matrix addition and multiplication. If R is nontrivial and $n \ge 2$, then $M_n(R)$ always has zero divisors and $M_n(R)$ is not commutative even if R is. If R has a 1, then the matrix with 1's down the diagonal and 0's elsewhere is the multiplicative identity in $M_n(R)$. In this case, the group of units is the set of invertible $n \times n$ matrices, denoted $GL_n(R)$ and called the **general linear group of degree** n over R.
- (9) **Quadratic Field:** Define $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$. It turns out that $\mathbb{Q}(\sqrt{2})$ is a field. In fact, we can replace 2 with any rational number that is not a perfect square in \mathbb{Q} .
- (10) **Hamilton Quaternions:** Define $\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}, i, j, k \in Q_8\}$ Then \mathbb{H} forms a ring, where addition is definite componentwise in *i*, *j*, and *k* and multiplication is defined by expanding products and the simplifying using the relations of Q_8 . It turns out that \mathbb{H} is a non-commutative ring with 1.

Definition 19. A **subring** of a ring *R* is a subgroup of *R* that is closed under multiplication.

Note 20. The property "is a subring" is clearly transitive. To show that a subset *S* of a ring *R* is a subring, it suffices to show that $S \neq \emptyset$, *S* is closed under subtraction, and *S* is closed under multiplication.

Example 21. Here are a few quick examples.

- (1) \mathbb{Z} is a subring of \mathbb{Q} , which is a subring of \mathbb{R} , which in turn is a subring of \mathbb{C} .
- (2) $2\mathbb{Z}$ is a subring of \mathbb{Z} .
- (3) The set $\mathbb{Z}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ is a subring of $\mathbb{Q}(\sqrt{2})$.
- (4) The ring *R* is a subring of R[x] if we identify *R* with set of constant functions.
- (5) The set of polynomials with zero constant term in R[x] is a subring of R[x].
- (6) $\mathbb{Z}[x]$ is a subring of $\mathbb{Q}[x]$.
- (7) \mathbb{Z}_n is *not* a subring of \mathbb{Z} .

Definition 22. Let *R* and *S* be rings. A **ring homomorphism** is a map $\phi : R \to S$ satisfying

- (i) $\phi(a+b) = \phi(a) + \phi(b)$
- (ii) $\phi(ab) = \phi(a)\phi(b)$

for all $a, b \in R$. The **kernel** of ϕ is defined via $\text{ker}(\phi) = \{a \in R \mid \phi(a) = 0\}$. If ϕ is a bijection, then ϕ is called an **isomorphism**, in which case, we say that *R* and *S* are **isomorphic rings** and write $R \cong S$.

Example 23.

(1) For $n \in \mathbb{Z}$, define $\phi_n : \mathbb{Z} \to \mathbb{Z}$ via $\phi_n(x) = nx$. We see that $\phi_n(x+y) = n(x+y) = nx + ny = \phi_n(x) + \phi_n(y)$. However, $\phi_n(xy) = n(xy)$ while $\phi_n(x)\phi_n(y) = (nx)(ny) = n^2xy$. It follows that ϕ_n is a ring homomorphism exactly when $n \in \{0, 1\}$.

(2) Define $\phi : \mathbb{Q}[x] \to \mathbb{Q}$ via $\phi(p(x)) = p(0)$ (called **evaluation at 0**). It turns out that ϕ is a ring homomorphism, where ker(ϕ) is the set of polynomials with 0 constant term.

Theorem 24. Let $\phi : R \to S$ be a ring homomorphism.

- (1) $\phi(R)$ is a subring of *S*.
- (2) ker(ϕ) is a subring of *R*.

In fact, we can say something even stronger about the kernel of a ring homomorphism, which will lead us to the notion of an **ideal**.

Theorem 25. Let $\phi : R \to S$ be a ring homomorphism. If $\alpha \in \text{ker}(\phi)$ and $r \in R$, then $\alpha r, r\alpha \in \text{ker}(\phi)$. That is, $\text{ker}(\phi)$ is closed under multiplication by elements of *R*.